Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36850816

ABSTRACT

MicroRNAs (miRNA) are small, non-coding regulatory molecules whose effective alteration might result in abnormal gene manifestation in the downstream pathway of their target. miRNA gene variants can impact miRNA transcription, maturation, or target selectivity, impairing their usefulness in plant growth and stress responses. Simple Sequence Repeat (SSR) based on miRNA is a newly introduced functional marker that has recently been used in plant breeding. MicroRNA and long non-coding RNA (lncRNA) are two examples of non-coding RNA (ncRNA) that play a vital role in controlling the biological processes of animals and plants. According to recent studies, the major objective for decoding their functional activities is predicting the relationship between lncRNA and miRNA. Traditional feature-based classification systems' prediction accuracy and reliability are frequently harmed because of the small data size, human factors' limits, and huge quantity of noise. This paper proposes an optimized deep learning model built with Independently Recurrent Neural Networks (IndRNNs) and Convolutional Neural Networks (CNNs) to predict the interaction in plants between lncRNA and miRNA. The deep learning ensemble model automatically investigates the function characteristics of genetic sequences. The proposed model's main advantage is the enhanced accuracy in plant miRNA-IncRNA prediction due to optimal hyperparameter tuning, which is performed by the artificial Gorilla Troops Algorithm and the proposed intelligent preying algorithm. IndRNN is adapted to derive the representation of learned sequence dependencies and sequence features by overcoming the inaccuracies of natural factors in traditional feature architecture. Working with large-scale data, the suggested model outperforms the current deep learning model and shallow machine learning, notably for extended sequences, according to the findings of the experiments, where we obtained an accuracy of 97.7% in the proposed method.


Subject(s)
Deep Learning , MicroRNAs , Plant Physiological Phenomena , RNA, Long Noncoding , Animals , Humans , Algorithms , MicroRNAs/genetics , Reproducibility of Results , RNA, Long Noncoding/genetics , Plant Physiological Phenomena/genetics
2.
Comput Intell Neurosci ; 2022: 9153207, 2022.
Article in English | MEDLINE | ID: mdl-35186072

ABSTRACT

Most plant diseases have apparent signs, and today's recognized method is for an expert plant pathologist to identify the disease by looking at infected plant leaves using a microscope. The fact is that manually diagnosing diseases is time consuming and that the effectiveness of the diagnosis is related to the pathologist's talents, making this a great application area for computer-aided diagnostic systems. The proposed work describes an approach for detecting and classifying diseases in citrus plants using deep learning and image processing. The main cause of decreased productivity is considered to be plant diseases, which results in financial losses. Citrus is an important source of nutrients such as vitamin C all around the world. On the contrary, citrus diseases have a negative impact on the citrus fruit and quality. In the recent decade, computer vision and image processing techniques have become increasingly popular for the detection and classification of plant diseases. The suggested approach is evaluated on the citrus disease image gallery dataset and the combined dataset (citrus image datasets of infested scale and plant village). These datasets were used to identify and classify citrus diseases such as anthracnose, black spot, canker, scab, greening, and melanose. AlexNet and VGG19 are two kinds of convolutional neural networks that were used to build and test the proposed approach. The system's total performance reached 94% at its best. The proposed approach outperforms the existing methods.


Subject(s)
Citrus , Deep Learning , Image Processing, Computer-Assisted , Neural Networks, Computer , Plant Diseases
SELECTION OF CITATIONS
SEARCH DETAIL
...