Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Pestic Biochem Physiol ; 201: 105903, 2024 May.
Article in English | MEDLINE | ID: mdl-38685225

ABSTRACT

Abamectin (AB) is widely used in agriculture and has been employed as an insecticide, nematicide, and livestock pest control agent. However, it may also pose a serious threat to mammals. The primary purpose of this research was to compare the sex variations between male and female rats during exposure and to assess the risk of toxicity of abamectin, which are still largely unknown. The twenty albino rats were divided randomly into four groups (n = 5): 1) the male control group; 2) the male treatment group treated with AB (1 mg/kg B.W.); 3) the female control group; and 4) the female treatment group treated with AB (1 mg/kg B.W.). AB administration caused a drop in body weight in females more than males with showing oxidative stress in both sexes of animals, as characterized by an increase in MDA content and a decrease in glutathione (GSH) content and superoxide dismutase (SOD) activity. Reported sex-specific effects suggested that females are more susceptible from males in brain tissues for alteration of antioxidant markers while females' liver and kidney tissues showed more level of lipid peroxidation than males. In addition, mitochondrial dysfunction was associated with a significant decrease in NADH dehydrogenase (Complex I) and a significant decrease in mitochondrial ATPase, which led to apoptosis and histopathological alterations in the targeted tissues, indicating that females are higher sensitive than males to these biological events. In brief, the results of this study led to female rats are generally more sensitive than male rats to neurobehavioral and hepatic complications associated with abamectin treatment. Further evaluation should be performed to determine the adverse outcome pathways involved and to determine the effects of sex on improving the risk assessment of abamectin in both sexes.


Subject(s)
Apoptosis , Ivermectin , Ivermectin/analogs & derivatives , Mitochondria , Oxidative Stress , Animals , Ivermectin/toxicity , Female , Male , Oxidative Stress/drug effects , Apoptosis/drug effects , Rats , Mitochondria/drug effects , Mitochondria/metabolism , Glutathione/metabolism , Superoxide Dismutase/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Lipid Peroxidation/drug effects , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Malondialdehyde/metabolism , Insecticides/toxicity
2.
Environ Toxicol Pharmacol ; 87: 103724, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34416397

ABSTRACT

The testicular deficiency associated with exposure to three widely used insecticides in Egyptian agriculture was evaluated. Animals were orally treated with sub-lethal dose (1/50 of the oral LD50) of cypermethrin (CYP), imidacloprid (IMC), and chlorpyrifos (CPF) at 5, 9 and 1.9 mg/kg/day, respectively, five times a week for one month. The CYP, IMC, and CPF exposure resulted in a significant decline in animal body weight, sperm count, motility, normality, and viability with increased head and tail deformities. Significant reduction in serum testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH), testis superoxide dismutase (SOD), and reduced glutathione (GSH) levels. In contrast, catalase (CAT), lipid peroxidation (LPO), and protein carbonyl content (PCC) levels were significantly stimulated. Jointly, obtained results were confirmed by microscopic examination of testis sections. The present data concluded that the CYP, IMC, and CPF have a public health impact and violently interferes with male rat reproductive system.


Subject(s)
Chlorpyrifos/toxicity , Insecticides/toxicity , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Pyrethrins/toxicity , Testis/drug effects , Animals , Catalase/metabolism , Follicle Stimulating Hormone/blood , Glutathione/metabolism , Lipid Peroxidation/drug effects , Luteinizing Hormone/blood , Male , Protein Carbonylation/drug effects , Rats , Spermatozoa/abnormalities , Spermatozoa/drug effects , Superoxide Dismutase/metabolism , Testis/metabolism , Testis/pathology , Testosterone/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...