Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Andrologia ; 53(4): e13978, 2021 May.
Article in English | MEDLINE | ID: mdl-33586219

ABSTRACT

The fungicide iprodione (IPR) and the insecticide chlorpyrifos (CPF) are concurrently applied for early disease control in fruits and other crops. However, there are no available data about the impacts of their co-exposure. Additionally, IPR and CPF are known as endocrine disruptors that can cause reproductive toxicity. The outcomes of their co-exposure on the development of male reproductive organs are still unknown. Therefore, this study aimed to assess the risk of exposure to these pesticides, particularly on the postnatal development of the male albino rat reproductive system from postnatal days 23-60. The results revealed that a single IPR or CPF exposure has harmful consequences on the reproductive development and function manifested by reduced testicular weight, serious changes in sperm characteristics, reproductive hormone level imbalance, testicular enzymes, oxidative stress and apoptosis-related enzymes, which correlated with transcription levels of steroidogenic- and spermatogenic-related genes. Histopathologically, both compounds caused severe damage in the testis and accessory glands architecture. Notably, co-exposure to IPR and CPF in rats caused more serious damage, indicative of an additive effect than individual exposure, so concurrent exposure should be avoided as it is more hazardous, especially on male fertility.


Subject(s)
Chlorpyrifos , Insecticides , Aminoimidazole Carboxamide/analogs & derivatives , Animals , Apoptosis , Chlorpyrifos/metabolism , Chlorpyrifos/toxicity , Hydantoins , Insecticides/toxicity , Male , Oxidative Stress , Rats , Testis/metabolism
2.
Gene ; 768: 145288, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33181259

ABSTRACT

The present study was carried out to explore a novel strategy with the hypothesis that the combined treatment with standard antidiabetic drug metformin (MET) and chitosan stabilized nanoparticles (CTS-Se-NPs) may have a potential role on insulin level, hepatic damage and apoptosis, and cardiac injury markers of type 2 diabetes mellitus (T2DM) in rat model. T2DM was induced by a high fat diet (HFD) for 8 weeks and a single injection of a low dose streptozotocin (STZ) (35 mg/kg) in Sprague Dawley rats. A total number of one hundred rats were divided into five groups; the first served as a control (non-diabetic) group and the other four groups served as diabetic rats. The treatments were even mono or combined therapy by CTS-Se-NPs and/or MET for 8 weeks. A group was given only MET (500 mg/kg bw/day), another was administered only CTS-Se-NPs at a dose of 2 mg se/kg/day, while the last group was given both of them (co-treated group). Biochemical, molecular and histopathological analyses were conducted to figure out the efficiency of the treatment by the monotherapeutic mode or combination therapy on the insulin level, oxidants/antioxidants status, inflammatory mediators, hepatic and cardiac injury biomarkers and apoptotic/anti-apoptotic gene expressions. Our results indicated that HFD/STZ-induced toxic effects on the serum, hepatic and cardiac tissues including a remarkable elevation of the oxidative and inflammatory mediators, and up-regulation of the apoptotic genes (Bax, Caspase-3, Fas, Fas-L) expression. Histologically, the heart tissue revealed various degenerative, vascular and inflammatory alterations characteristic to murine cardiomyopathy. Besides, livers from HFD-STZ-treated rats showed numerous cytotoxic, circulatory and inflammatory alterations. Combined therapy with MET and CTS-Se-NPs resulted in a better remarkable anti-diabetic effect demonstrated by substantial decreases in fasting blood glucose and insulin levels, and elevated with up-regulation of anti-apoptotic gene (BCL-2) and down-regulation of apoptotic genes after 8 weeks of treatment than that revealed in the monotherapeutic strategy. In addition, it ameliorated the damage of cardiac and hepatic tissues and reduced lipid accumulation, and pro-inflammatory cytokines levels and restored the antioxidant capacity. It could be concluded that, the combined strategy applied in the current study have a potential role to limit the diabetic complications and restore insulin resistance to a higher extent than monotherapeutic strategy and could be considered a promising therapeutic alternative in T2DM rat model.


Subject(s)
Chitosan/chemistry , Diabetes Mellitus, Type 2/metabolism , Heart Diseases/drug therapy , Liver Diseases/drug therapy , Nanoparticles/chemistry , Selenium/physiology , Signal Transduction/drug effects , Animals , Antioxidants/metabolism , Blood Glucose/drug effects , Blood Glucose/metabolism , Caspases/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/chemically induced , Diet, High-Fat/adverse effects , Fas Ligand Protein/metabolism , Heart Diseases/etiology , Heart Diseases/metabolism , Hypoglycemic Agents/pharmacology , Insulin Resistance/physiology , Liver/drug effects , Liver/metabolism , Liver Diseases/etiology , Liver Diseases/metabolism , Male , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Sprague-Dawley , Selenium/chemistry , Streptozocin/pharmacology , bcl-2-Associated X Protein/metabolism , fas Receptor/metabolism
3.
Antioxidants (Basel) ; 10(1)2020 Dec 27.
Article in English | MEDLINE | ID: mdl-33375437

ABSTRACT

BACKGROUND: this study examined the metformin (MF) and/or chitosan stabilized selenium nanoparticles (CH-SeNPs) efficacy to alleviate the male reproductive function impairment in a high-fat diet feed with low-dose streptozotocin (HFD/STZ) induced type 2 diabetes mellitus (T2DM) diabetic rat model. METHODS: control non-diabetic, HFD/STZ diabetic, HFD/STZ+MF, HFD/STZ+CH-SeNPs, and HFD/STZ+MF+CH-SeNPs rat groups were used. After 60 days, semen evaluation, hormonal assay, enzymatic antioxidant, lipid peroxidation, testis histopathology, and the steroidogenesis-related genes mRNA expressions were assessed. RESULTS: in the HFD/STZ diabetic rats, sperm count and motility, male sexual hormones, and testicular antioxidant enzymes were significantly reduced. However, sperm abnormalities and testicular malondialdehyde were significantly incremented. The steroidogenesis-related genes, including steroidogenic acute regulatory protein (StAr), cytochrome11A1 (CYP11A1), cytochrome17A1 (CYP17A1), and hydroxysteroid 17-beta dehydrogenase 3 (HSD17B3), and the mitochondrial biogenesis related genes, including peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGCα) and sirtuin (SIRT), were significantly downregulated in the HFD/STZ diabetic rats. However, CYP19A1mRNA expression was significantly upregulated. In contrast, MF and/or CH-SeNPs oral dosing significantly rescued the T2DM-induced sperm abnormalities, reduced sperm motility, diminished sexual hormones level, testicular oxidative damage, and steroidogenesis-related genes dysregulation. In the MF and CH-SeNP co-treated group, many of the estimated parameters differ considerably from single MF or CH-SeNPs treated groups. CONCLUSIONS: the MF and CH-SeNPs combined treatment could efficiently limit the diabetic complications largely than monotherapeutic approach and they could be considered a hopeful treatment option in the T2DM.

4.
Animals (Basel) ; 9(6)2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31212705

ABSTRACT

This study compares between different selenium forms (sodium selenite; SeS, selenomethionine; Met-Se or nano-Se) and levels on growth performance, Se retention, antioxidative potential of fresh and frozen meat, and genes related to oxidative stress in Ross broilers. Birds (n = 450) were randomly divided into nine experimental groups with five replicates in each and were fed diets supplemented with 0.3, 0.45, and 0.6 mg Se/kg as (SeS, Met-Se), or nano-Se. For overall growth performance, dietary inclusion of Met-Se or nano-Se significantly increased (p < 0.05) body weight gain and improved the feed conversion ratio of Ross broiler chicks at the level of 0.45 and 0.6 mg/kg when compared with the group fed the same level of SeS. Se sources and levels significantly affected (p < 0.05) its concentrations in breast muscle, liver, and serum. Moreover, Se retention in muscle was higher (p < 0.05) after feeding of broiler chicks on a diet supplemented with Met-Se or nano-Se compared to the SeS group, especially at 0.6 mg/kg. Additionally, higher dietary levels from Met-Se or nano-Se significantly reduced oxidative changes in breast and thigh meat in the fresh state and after a four-week storage period and increased muscular pH after 24 h of slaughter. Also, broiler's meat in the Met-Se and nano-Se groups showed cooking loss and lower drip compared to the SeS group (p < 0.05). In the liver, the mRNA expression levels of glutathione peroxidase, superoxide dismutase, and catalase were elevated by increasing dietary Se levels from Met-Se and nano-Se groups up to 0.6 mg/kg when compared with SeS. Therefore, dietary supplementation with 0.6 mg/kg Met-Se and nano-Se improved growth performance and were more efficiently retained than with SeS. Both sources of selenium (Met-Se and nano-Se) downregulated the oxidation processes of meat during the first four weeks of frozen storage, especially in thigh meat, compared with an inorganic source. Finally, dietary supplementation of Met-Se and nano-Se produced acceptable Se levels in chicken meat offered for consumers.

SELECTION OF CITATIONS
SEARCH DETAIL
...