Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(45): 28954-28960, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36320723

ABSTRACT

Layered double hydroxides (LDH) are potential electrocatalysts to address the sluggish oxygen evolution reaction (OER) of water splitting. In this work, copper oxide (CuO/Cu2O) nanoparticles are integrated with cobalt-manganese layered double hydroxide (CoMn-LDH) to enhance their performance towards OER. The catalyst is synthesized by growing CoMn-LDH nanosheets in the presence of CuO/Cu2O nanoparticles that were obtained by the calcination of the copper containing metal-organic framework (HKUST-1). The synthesized CoMn-LDH@CuO/Cu2O electrocatalyst shows excellent activity towards OER with an overpotential of 297 mV at a catalytic current density of 10 mA cm-2 and have a Tafel slope value of 89 mV dec-1. Moreover, a slight decrease in the performance parameters is observed until the 15 h of continuous operation. We propose that the conductive strength of CuO/Cu2O and its synergistic effect with the CoMn-LDH are responsible for the improved OER performance of the desired electrocatalyst.

2.
Front Chem ; 9: 686968, 2021.
Article in English | MEDLINE | ID: mdl-34249860

ABSTRACT

Layered double hydroxides (LDH) are being used as electrocatalysts for oxygen evolution reactions (OERs). However, low current densities limit their practical applications. Herein, we report a facile and economic synthesis of an iron-copper based LDH integrated with a cobalt-based metal-organic framework (ZIF-12) to form LDH-ZIF-12 composite (1) through a co-precipitation method. The as-synthesized composite 1 requires a low overpotential of 337 mV to achieve a catalytic current density of 10 mA cm-2 with a Tafel slope of 89 mV dec-1. Tafel analysis further demonstrates that 1 exhibits a slope of 89 mV dec-1 which is much lower than the slope of 284 mV dec-1 for LDH and 172 mV dec-1 for ZIF-12. The slope value of 1 is also lower than previously reported electrocatalysts, including Ni-Co LDH (113 mV dec-1) and Zn-Co LDH nanosheets (101 mV dec-1), under similar conditions. Controlled potential electrolysis and stability test experiments show the potential application of 1 as a heterogeneous electrocatalyst for water oxidation.

SELECTION OF CITATIONS
SEARCH DETAIL
...