Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
2.
Respir Med Case Rep ; 49: 102026, 2024.
Article in English | MEDLINE | ID: mdl-38712315

ABSTRACT

Background: Heated tobacco products (HTPs) have been marketed as safer alternatives to conventional cigarettes, but emerging evidence suggests potential respiratory risks. We present a case of pulmonary complications associated with IQOS, a popular HTP, contributing to the growing understanding of these risks. Case description: A 40-year-old chronic smoker switched to IQOS, consuming 1.5 packs per day. He presented with incidental chest radiographic abnormalities and peripheral eosinophilia. Computed tomography of chest revealed pulmonary nodules and ground glass opacities. Bronchoscopy indicated mild eosinophilia. After ruling out other causes, a lung biopsy was recommended but declined. Discontinuation of IQOS led to symptom resolution and radiographic improvement. This case adds to a limited literature on HTP-induced lung injury, with a unique presentation and favorable response to cessation. Conclusions: The case highlights potential pulmonary complications and the first describing an organizing pattern of lung injury associated with IQOS use, emphasizing the importance of recognizing and discontinuing HTPs in patients with respiratory symptoms or radiographic abnormalities. Further research is needed to elucidate the mechanisms underlying the harmful effects of HTPs and inform public health policies. This case underscores the importance of monitoring and educating individuals about the potential risks of HTPs to respiratory health, especially in the context of smokers switching to these products.

11.
Plants (Basel) ; 13(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38256756

ABSTRACT

Multiple abiotic stresses such as drought, salinity, heat, and cold stress prevailing in natural habitats affect plant growth and development. Different species modify their structural and functional traits to combat these abiotic stresses while growing in stressful environments. Cenchrus species, i.e., Cenchrus pennisetiformis, C. setiger, and C. prieurii are widely distributed grasses found growing all over the world. Samples from natural populations were collected from different ecological regions in the Punjab and Khyber Pakhtoonkhwa that were exposed to aridity, salinity, and cold, while one site was designated as normal control. In the present study, structural and functional modifications of three Cenchrus species under abiotic stresses were evaluated. It was expected that each Cenchrus species may evolve different strategies to cope with multiple abiotic stresses. All Cenchrus species responded differently whether growing in normal environment or stressful conditions. The most remarkable feature for survival in C. pennisetiformis under cold stress was increased inflorescence and increased stem and root lignification. C. prieurii showed better tolerance to saline and cold environments. C. setiger showed better development of leaf sheath anatomical traits. The structural and functional modifications in Cenchrus species such as development of mechanical tissues provided structural support, while dermal and parenchymatous tissues increased water storage capacity and minimized water loss. An increase in the concentration of organic osmolytes and ionic content aids turgor pressure maintenance and ionic content crucial for plant growth and development. It was concluded that structural and functional alterations in all Cenchrus species were very specific and critical for survival under different environmental stresses. The ecological fitness of these species relied on maintenance of growth and biomass production, and the development of mechanical, vascular, dermal and parenchyma tissues under stressful environmental conditions. Moreover, accumulation of beneficial ions (K+ and Ca2+) and organic osmolytes were critical in turgor maintenance, hence survival of Cenchrus spp.

12.
Int J Phytoremediation ; 26(6): 913-927, 2024.
Article in English | MEDLINE | ID: mdl-37985450

ABSTRACT

Salt excretory halophytes are the major sources of phytoremediation of salt-affected soils. Cressa cretica is a widely distributed halophyte in hypersaline lands in the Cholistan Desert. Therefore, identification of key physio-anatomical traits related to phytoremediation in differently adapted C. cretica populations was focused on. Four naturally adapted ecotypes of non-succulent halophyte Cressa cretica L. form hyper-arid and saline desert Cholistan. The selected ecotypes were: Derawar Fort (DWF, ECe 20.8 dS m-1) from least saline site, Traway Wala Toba (TWT, ECe 33.2 dS m-1) and Bailah Wala Dahar (BWD, ECe 45.4 dS m-1) ecotypes were from moderately saline sites, and Pati Sir (PAS, ECe 52.4 dS m-1) was collected from the highly saline site. The natural population of this species was collected and carefully brought to the laboratory for different structural and functional traits. As a result of high salinity, Na+, Cl-, K+, and Ca2+ content significantly increased at root and shoot level. At root level, some distinctive modifications such as increased sclerification in vascular bundles, enlarged vascular bundles, metaxylem vessels, phloem region, and storage parenchyma (cortex) are pivotal for water storage under extreme arid and osmotic condition. At the stem level, enhanced sclerification in outer cortex and vascular bundles, stem cellular area, cortical proportion, metaxylem and phloem area, and at the leaf level, very prominent structural adaptations were thicker and smaller leaves with increased density of salt glands and trichomes at surface, few and large stomata, reduced cortical and mesophyll parenchyma, and narrow xylem vessels and phloem area represent their non-succulent nature. The ecotype collected from hypersaline environments was better adapted regarding growth traits, ion uptake and excretion, succulence, and phytoremediation traits. More importantly, structural and functional traits such as root length and biomass, accumulation of toxic ions along with K+ in root and shoot, accumulation of Ca2+ in shoot and Mg2+ in root, excretion of toxic ions were the highest in this ecotype. In conclusion, all these alterations strongly favor water conservation, which certainly contributes to ecotypes survival under salt-induced physiological drought.


Naturally adapted salt tolerant plants provide exceptional material for exploring adaptive mechanisms they use to confront high salt concentrations. Cressa cretica is a hypersaline hyperarid desert colonizer, which was previously underexplored. In the present study, we focused on the new insight on relationship among anatomical modifications, salt accumulation and excretion and phytoremediation potential of this rare species.


Subject(s)
Alkalies , Soil , Biodegradation, Environmental , Soil/chemistry , Saline Solution , Sodium Chloride , Ions , Salt-Tolerant Plants/chemistry , Salt-Tolerant Plants/physiology , Salinity
13.
Environ Sci Pollut Res Int ; 30(53): 113457-113480, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37851260

ABSTRACT

Anthropogenic activities, such as industrial wastewater and use of water softeners, cause hyper-accumulation of Cl- in water sources and soils. Currently, industries have no sustainable method to remove these Cl- ions from wastewater. This study was conducted to evaluate the integrative responses of wheat cultivated in five industrial effluent-affected areas (S2-S6) by investigating soil characters and bioaccumulation of metals in wheat plants and grains. The S4 site (near the second chloride outlet) exhibited a higher concentration of CO2, SO2, NO2, Cl-, Cd, Mn, Ni, Cr, and Zn. Soil from S6 (sewage wastewater downstream getting mixed with chloride-contaminated water) had a minimum level of nutrients (Na, K, and Ca), maximum metals (Cd, Fe, Pb, Mn), and reduction in plant biomass. In site S2 (sewage wastewater upstream of the chloride factory), a higher level of minerals and metals was noted in the roots. Maximum metals in grains occurred in S6 with higher organic osmolytes. The sequestration capacity of metals in leaves was also increased by alterations in anatomical traits. Results indicated that metals and hyper-Cl- concentration employed a negative influence on the plants because of poor soil quality, extremely damaged microstructures leading to reduced yield, poor grain quality, and excessive translocation from roots to wheat grains. These findings revealed that contaminated plants used as either green forage or hay are noxious to animals and if used as grain for feed or humans can lead to serious health hazards.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Cadmium/analysis , Triticum/chemistry , Chlorides/analysis , Wastewater , Sewage/analysis , Metals/analysis , Soil/chemistry , Edible Grain/chemistry , Soil Pollutants/analysis , Water/analysis , Metals, Heavy/analysis
14.
Physiol Mol Biol Plants ; 29(8): 1205-1224, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37829703

ABSTRACT

Cenchrus ciliaris L. is a perennial grass that can grow in a diverse range of habitats including challenging deserts. The purpose of the study was to investigate the impact of aridity on morpho-anatomical and physiological traits in C. ciliaris populations collected from arid and semi-arid areas of Punjab, Pakistan. The populations growing in extremely arid conditions displayed a range of structural and physiological adaptations. Under extremely dry conditions, root epidermal thickness (90.29 µm), cortical cell area (7677.78 µm2), and metaxylem cell area (11,884.79 µm2) increased while root pith cell area (2681.96 µm2) decreased in tolerant populations. The populations under extremely aridity maximized leaf lamina (184.21 µm) and midrib thickness (316.46 µm). Additionally, highly tolerant populations were characterized by the accumulation of organic osmolytes such as glycinebetaine (132.60 µmol g-1 FW) was increased in QN poulations, proline (118.01 µmol g-1 F.W) was maximum in DF populations, and total amino acids (69.90 mg g-1 FW) under extreme water deficit conditions. In arid conditions, abaxial stomatal density (2630.21 µm) and stomatal area (8 per mm2) were also reduced in DF populations to check water loss through transpiration. These findings suggest that various parameters are crucial for the survival of C. ciliaris in arid environments. The main strategies used by C. ciliaris was intensive sclerification, effective retention of ions, and osmotic adjustment through proline and glycinebetaine under arid conditions. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01351-3.

15.
Medicine (Baltimore) ; 102(37): e35107, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37713897

ABSTRACT

To assess and compare the severity of corona virus disease 2019 (COVID-19) infection in patients with and without a history of influenza vaccination. In this cross-sectional study descriptive statistics were used to analyze COVID-19-related parameters, including demographics, comorbidities, and severity. Normally distributed data with mean, standard deviation, and 95% confidence interval (CI) were reported, while non-normally distributed data was presented with median and inter-quartile range. Categorical data was summarized using frequencies and percentages. Associations were assessed using Pearson Chi-square, Fisher Exact, t test, or Mann-Whitney U test. Univariate and multivariate logistic regression methods were used to evaluate the relationship between disease severity, clinical outcomes, influenza vaccination status, and other predictors. Significance was considered for p values < 0.05. Statistical analyses were done using SPSS V.27.0 (IBM Corp) and Epi Info (CDC) software. Between March 2020 and December 2020 before the availability of COVID-19 vaccination, 148,215 severe acute respiratory syndrome corona virus 2 positive patients were studied, with 3519 vaccinated against influenza, and 144,696 unvaccinated. After random sampling at 1:2 ratio, the final analysis included 3234 vaccinated and 5640 unvaccinated patients. The majority (95.4%) had mild or asymptomatic COVID-19, while 4.6% had severe or critical cases as defined by World Health Organization severity grading. Multivariate logistic regression analysis revealed that the vaccinated group had significantly less severe (adjusted odds ratio [OR] 0.683; 95% CI 0.513-0.911, P = .009) and critical (adjusted OR 0.345; 95% CI 0.145-0.822, P = .016) COVID-19 and were less likely to require oxygen therapy (adjusted OR 0.696; 95% CI 0.531-0.912, P = .009) after adjusting for confounders like age, gender and comorbidities. No significant differences in Intensive care unit admissions (adjusted OR 0.686; 95% CI 0.425-1.11, P = .122), mechanical ventilation (adjusted OR 0.631; 95% CI 0.308-1.295, P = .209) and mortality (adjusted OR 1.105; 95% CI 0.348-3.503, P = .866) were noted between the 2 groups. Influenza vaccination may significantly reduce the severity of COVID-19 but has no significant effect on intensive care unit admissions, mechanical ventilation and all- cause mortality.


Subject(s)
COVID-19 , Influenza, Human , Humans , Qatar/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Cross-Sectional Studies , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Vaccination
16.
Plant Physiol Biochem ; 203: 107992, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37688901

ABSTRACT

Calotropis procera (Aiton) W. T. Aiton, originally native to tropical and sub-tropical regions of northwestern Africa to southwest Asia through the Arabian Peninsula. The present study was engaged to uncover the underlying mechanism (structural and functional) of C. procera sampled from six different ecological regions. The population of normal irrigated agriculture field (IAF) had better growth, high K+ ion content, photosynthetic pigments (chl a chl b, Tchl and caro) and stomatal density. The population of dust and pollution stressed habitat (IWD) exhibited enlarged epidermal cells in stem and leaf, enhanced cortical proportion with largest cells in stem and phloem area in leaf. The population of drought and aridity stressed habitat (ARS) showed increased root cellular area, cortical region thickness and its cell area, and phloem region. The population from salt-affected habitat (SLF) possessed high root and shoot ionic contents (Na+ and Ca2+), total soluble sugars, total antioxidant activity, chlorophyll a/b, widened metaxylem vessels and phloem area in the stem, while intensive sclerification observed in both stem and leaf. The population native to waterlogged and salinity stressed habitat (APC) represented vigorous root growth, total free amino acids, well-developed metaxylem vessels and stomatal area in leaf. The population from drought and salinity-prone habitat (UBL) indicate increased storage of parenchymatous tissue (pith region and its cells area) and epidermal cell area in leaf. It is concluded that C. procera showed much outmost behavior in view of growth, structural and functional attributes in response to prevailing environmental condition.

17.
Clin Case Rep ; 11(9): e6897, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37720714

ABSTRACT

Primary intrapulmonary thymoma (PIT), defined as the presence of thymoma tissue in the lung without an accompanying mediastinal component, is uncommon and so offers a diagnostic quandary. We describe the case of PIT in an 81-year-old man.

18.
PLoS One ; 18(6): e0286736, 2023.
Article in English | MEDLINE | ID: mdl-37285364

ABSTRACT

Plant performance is mainly estimated based on plant architecture, leaf features and internal microstructural changes. Olive (Olea europaea L.) is a drought tolerant, oil yielding, and medium sized woody tree that shows specific structural and functional modifications under changing environment. This study was aimed to know the microstructural alteration involving in growth and yield responses of different Olive cultivars. Eleven cultivars were collected all over the world and were planted at Olive germplasm unit, Barani Agricultural Research Institute, Chakwal (Punjab) Pakistan, during September to November 2017. Plant material was collected to correlate morpho-anatomical traits with yield contributing characteristics. Overall, the studied morphological characters, yield and yield parameters, and root, stem and leaf anatomical features varied highly significantly in all olive cultivars. The most promising cultivar regarding yield was Erlik, in which plant height seed weight and root anatomical characteristics, i.e., epidermal thickness and phloem thickness, stem features like collenchymatous thickness, phloem thickness and metaxylem vessel diameter, and leaf traits like midrib thickness, palisade cell thickness a phloem thickness were the maximum. The second best Hamdi showed the maximum plant height, fruit length, weight and diameter and seed length and weight. It also showed maximum stem phloem thickness, midrib and lamina thicknesses, palisade cell thickness. Fruit yield in the studied olive cultivars can be more closely linked to high proportion of storage parenchyma, broader xylem vessels and phloem proportion, dermal tissue, and high proportion of collenchyma.


Subject(s)
Olea , Olea/chemistry , Fruit , Trees , Phenotype , Seeds
19.
Environ Sci Pollut Res Int ; 30(33): 80693-80712, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37301816

ABSTRACT

Using halophytes for phytoremediation is an environmentally friendly technique, now gaining importance all over the world. Fagonia indica Burm. f. (Indian Fagonia) is primarily distributed in salt-affected lands of the Cholistan Desert and surrounding habitats. Four populations with three replications from salt-affected habitats were collected from natural habitats to evaluate structural and functional adaptation for salinity tolerance and phytoremediation of hypersaline habitats. The populations collected from the highest saline sites Pati Sir (PS) and Ladam Sir (LS) had restricted growth habit, increased accumulation of K+ and Ca2+ along Na+ and Cl-, more excretion of Na+ and Cl-, increased cross-sectional area of root and stem, larger exodermal and endodermal cells in roots, and broad metaxylem area. Sclerification in stem was high in population. Specific modifications in leaves were reduced stomatal area and increased adaxial epidermal cell area. Important traits associated with phytoremediation potential of F. indica populations (Pati Sir and Ladam Sir) were deeper roots and taller plants, increased density of salt glands on leaf surface, and high excretion of Na+. Additionally, higher bio-concentration factor, translocation factor, and dilution factor for Na and Cl- in same Ladam Sir and Pati Sir population were identified as key phytoremediation attributes. The plants of F. indica colonizing high salinities (Pati Sir and Ladam Sir) were, therefore, more efficient in phytoremediation of saline soils as these populations accumulated and/or excrete toxic salts. Density of salt glands remarkably increased in the Pati Sir population collected from the highest salinity. This population accumulated and excreted the highest amount of Na+ and Cl-. The dilution factor of Na+ and Cl- ions was also the highest in this population. Anatomical modifications such as root and stem cross-sectional areas, proportion of storage parenchyma, and broad metaxylem vessels were the maximum in Pati Sir population. These modifications indicate not only better salt tolerance of the Pati Sir population but also better in accumulation and excretion of toxic salts. This population can potentially rehabilitate hypersaline uncultivated lands through green reclamation.


Subject(s)
Salt-Tolerant Plants , Salts , Animals , Salt-Tolerant Plants/metabolism , Biodegradation, Environmental , Ecosystem , Salt Tolerance , Sodium/metabolism , Salinity , Plant Leaves/metabolism
20.
Int J Gen Med ; 16: 2633-2642, 2023.
Article in English | MEDLINE | ID: mdl-37377780

ABSTRACT

Purpose: COVID-19 pandemic resulted in a significant number of critical care admissions secondary to severe pneumonia and acute respiratory distress syndrome. We evaluated the short-, medium- and long-term outcomes of lung function and quality of life in this prospective cohort study and reported the outcomes at 7 weeks and 3 months from discharge from intensive care unit. Methods: A prospective cohort study of ICU survivors with COVID-19 was conducted from August 2020 to May 2021 to evaluate baseline demographic and clinical variables as well as determine lung function, exercise capacity, and health-related quality of life (HRQOL) using spirometry and 6-minute walk test (6MWT) conducted in accordance with American Thoracic Society standards, and SF-36 (Rand), respectively. SF-36 is a generic 36 question standardized health survey. Descriptive and inferential statistics (alpha = 0.05) were used to analyse the data. Results: At baseline, 100 participants were enrolled in the study of whom 76 followed up at 3 months. Majority of the patients were male (83%), Asians (84%) and less than 60 years of age (91%). HRQOL showed significant improvement in all domains of SF-36, except in emotional wellbeing. Spirometry variables also showed significant improvement in all variables over time with greatest improvement in percentage predicted Forced expiratory volume 1 (79% vs 88% p < 0.001). 6MWT showed significant improvement in variables of walk distance, dyspnea, and fatigue with greatest improvement in change in oxygen saturation (3% vs 1.44% p < 0.001). Intubation status did not impact the changes in SF-36, spirometry or 6MWT variables. Conclusion: Our findings suggest that ICU survivors of COVID-19 have significant improvement in their lung function, exercise capacity and HRQOL within 3 months of ICU discharge regardless of intubation status.

SELECTION OF CITATIONS
SEARCH DETAIL
...