Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Opt Soc Am A Opt Image Sci Vis ; 39(1): 136-142, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35200983

ABSTRACT

The inherent bandwidth limitations make it quite challenging to achieve the wideband response of metamaterial absorbers. In this paper, a metamaterial absorber based on triangular metallic rings has been proposed to attain wideband absorption (>90%) in the wavelength span of 400-750 nm. The absorber is constituted of periodically placed unit cells, where each unit cell contains three concentric triangular chromium metal rings. The absorption of the design remains stable (above 70%) over a wide range of incidence obliquity (0°-60°) under transverse electric (TE) and transverse magnetic (TM) polarization. Further, the absorber shows polarization-insensitive behavior over different polarization states. The low-cost and thermally endurable chromium metal, wide absorption, and wide-angle stability make the proposed absorber a suitable candidate for applications like solar energy harvesting, solar detectors, solar thermal photovoltaics, and photonic devices.

2.
Sensors (Basel) ; 22(2)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35062506

ABSTRACT

In diabetic retinopathy (DR), the early signs that may lead the eyesight towards complete vision loss are considered as microaneurysms (MAs). The shape of these MAs is almost circular, and they have a darkish color and are tiny in size, which means they may be missed by manual analysis of ophthalmologists. In this case, accurate early detection of microaneurysms is helpful to cure DR before non-reversible blindness. In the proposed method, early detection of MAs is performed using a hybrid feature embedding approach of pre-trained CNN models, named as VGG-19 and Inception-v3. The performance of the proposed approach was evaluated using publicly available datasets, namely "E-Ophtha" and "DIARETDB1", and achieved 96% and 94% classification accuracy, respectively. Furthermore, the developed approach outperformed the state-of-the-art approaches in terms of sensitivity and specificity for microaneurysms detection.


Subject(s)
Deep Learning , Diabetic Retinopathy , Microaneurysm , Algorithms , Diabetic Retinopathy/diagnosis , Fundus Oculi , Humans , Microaneurysm/diagnostic imaging , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...