Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Cell Biochem Funct ; 42(3): e3993, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38532685

ABSTRACT

About 70% of cases of breast cancer are compromised by Estrogen-positive breast cancer. Through its regulation of several processes, including cell proliferation, cell cycle progression, and apoptosis, Estrogen signaling plays a pivotal role in the genesis and progression of this particular kind of breast cancer. One of the best treatment strategies for treating Estrogen-positive breast cancer is blocking Estrogen signaling. However, patients' treatment failure is mainly caused by the emergence of resistance and metastases, necessitating the development of novel therapeutic targets. Numerous studies have shown long noncoding RNAs (lncRNAs) to play a role in Estrogen-mediated carcinogenesis. These lncRNAs interact with co-regulators and the Estrogen signaling cascade components, primarily due to Estrogen activation. Vimentin and E-cadherin are examples of epithelial-to-mesenchymal transition markers, and they regulate genes involved in cell cycle progression, such as Cyclins, to affect the growth, proliferation, and metastasis of Estrogen-positive breast cancer. Furthermore, a few of these lncRNAs contribute to developing resistance to chemotherapy, making them more desirable targets for enhancing results. Thus, to shed light on the creation of fresh approaches for treating this cancer, this review attempts to compile recently conducted studies on the relationship between lncRNAs and the advancement of Estrogen-positive breast cancer.


Subject(s)
Breast Neoplasms , RNA, Long Noncoding , Humans , Female , Breast Neoplasms/pathology , RNA, Long Noncoding/genetics , Estrogens , Cell Proliferation/genetics , Receptors, Estrogen/metabolism , Gene Expression Regulation, Neoplastic
2.
Pathol Res Pract ; 248: 154705, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37499519

ABSTRACT

microRNAs (miRNAs) play a crucial role in various biological processes, including immune system regulation, such as cell proliferation, tolerance (central and peripheral), and T helper cell development. Dysregulation of miRNA expression and activity can disrupt immune responses and increase susceptibility to neuroimmune disorders. Conversely, miRNAs have been shown to have a protective role in modulating immune responses and preventing autoimmunity. Specifically, reducing the expression of miRNA-128 (miR-128) in an Alzheimer's disease (AD) mouse model has been found to improve cognitive deficits and reduce neuropathology. This comprehensive review focuses on the significance of miR-128 in the pathogenesis of neuroautoimmune disorders, including multiple sclerosis (MS), AD, Parkinson's disease (PD), Huntington's disease (HD), epilepsy, as well as other immune-mediated diseases such as inflammatory bowel disease (IBD) and rheumatoid arthritis (RA). Additionally, we present compelling evidence supporting the potential use of miR-128 as a diagnostic or therapeutic biomarker for neuroimmune disorders. Collectively, the available literature suggests that targeting miR-128 could be a promising strategy to alleviate the behavioral symptoms associated with neuroimmune diseases. Furthermore, further research in this area may uncover new insights into the molecular mechanisms underlying these disorders and potentially lead to the development of novel therapeutic approaches.


Subject(s)
Autoimmune Diseases , Inflammatory Bowel Diseases , MicroRNAs , Mice , Animals , Autoimmune Diseases/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Autoimmunity/genetics , Inflammatory Bowel Diseases/genetics , Biomarkers
3.
Omega (Westport) ; : 302228221144791, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37384902

ABSTRACT

This systematic review was conducted to estimate the pooled score of death anxiety during the COVID-19 pandemic. All eligible articles from January 2020 to May 2022 reporting the death anxiety score were included in the analysis b.y searching the Scopus, PubMed, Embase, and ISI databases. The standard score of death anxiety in the COVID-19 pandemic was 50%. The highest score of death anxiety was related to patients with COVID-19 (59.4%), other chronic patients (58.9%), and the elderly (56.4%). The lowest death anxiety score was related to the general population (42.9%) and health care workers (48.2%). The death anxiety score in the studies whose data was collected in 2020 and 2021 was 51% and 62%, respectively. During the COVID-19 pandemic, people experienced high death anxiety, which had terrible effects on their lives. Therefore, it seems necessary to provide training courses to deal with death anxiety for other possible pandemics.

4.
J Mol Model ; 29(5): 147, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37069404

ABSTRACT

CONTEXT: Nanomaterials enjoy a great surface-to-surface area ratio, small size, extremely high stability, satisfactory bio-compatibility, improved permeability, specificity in receptor targeting, and tunable lifetime. This paper investigates alkali metal-doped borospherenes M@C4B32 (in which M denotes K, Na, and Li) as a highly efficient alternative for the delivery of drugs using density functional theory (DFT) calculations. A borospherene with a B36 nanocage doped with four C atoms (i.e., C4B32) recently showed promising performance. Therefore, the present work investigates C4B32 nanoclusters doped with alkali metals for the effective delivery of drugs. METHODS: This paper primarily seeks to evaluate the interaction between thioguanine (TG) as a cancer drug and pristine M@C4B32 through DFT (PBE/6-31 + G (d)) calculations. The UV-Vis spectroscopy indicated a redshift in the complex electronic spectra to higher wavelengths (i.e., lower energy levels). Hence, K@C4B32 was concluded to be effective in TG delivery.


Subject(s)
Metals, Alkali , Quantum Theory , Metals, Alkali/chemistry , Lithium , Sodium , Ions/chemistry
5.
Phytother Res ; 37(4): 1624-1639, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36883769

ABSTRACT

Liver cancer is the sixth most prevalent cancer and ranks third in cancer-related death, after lung and colorectal cancer. Various natural products have been discovered as alternatives to conventional cancer therapy strategies, including radiotherapy, chemotherapy, and surgery. Curcumin (CUR) with antiinflammatory, antioxidant, and antitumor activities has been associated with therapeutic benefits against various cancers. It can regulate multiple signaling pathways, such as PI3K/Akt, Wnt/ß-catenin, JAK/STAT, p53, MAPKs, and NF-ĸB, which are involved in cancer cell proliferation, metastasis, apoptosis, angiogenesis, and autophagy. Due to its rapid metabolism, poor oral bioavailability, and low solubility in water, CUR application in clinical practices is restricted. To overcome these limitations, nanotechnology-based delivery systems have been applied to use CUR nanoformulations with added benefits, such as reducing toxicity, improving cellular uptake, and targeting tumor sites. Besides the anticancer activities of CUR in combating various cancers, especially liver cancer, here we focused on the CUR nanoformulations, such as micelles, liposomes, polymeric, metal, and solid lipid nanoparticles, and others, in the treatment of liver cancer.


Subject(s)
Curcumin , Liver Neoplasms , Humans , Curcumin/pharmacology , Phosphatidylinositol 3-Kinases , Micelles , Signal Transduction
6.
Curr Med Chem ; 30(39): 4421-4449, 2023.
Article in English | MEDLINE | ID: mdl-36717999

ABSTRACT

The reproductive system is extremely vulnerable to chemotherapy drugs, ionizing radiation, toxic heavy metals, chemicals, and so on. These harmful stimuli are able to induce oxidative damage, apoptosis, inflammation, and other mechanisms in the reproductive organs, leading to different adverse reproductive effects. It was shown that using medicinal plants (medicinal herbs) can be an effective medication for the prevention and treatment of multiple health conditions. Silymarin is a medicinal herb extract, obtained from the seeds of Silybum marianum. This herbal agent is a nontoxic agent even at relatively high physiological dose values, which suggests that it is safe for use in the treatment of different diseases. The hepato-, neuro-, cardio- and nephro-protective effects of silymarin have been assessed previously. The protective activities of silymarin can point to anti-oxidant, anti-apoptotic, anti-inflammatory, anti-fibrotic, immunomodulatory, and membrane-stabilizing properties. In this review, we aim to summarize current studies on the protective potentials of silymarin against reproductive toxicity. The molecular mechanisms of silymarin protection against cellular toxicity are also studied. Moreover, the findings obtained from improved formulations and delivery systems of silymarin have been addressed.


Subject(s)
Plants, Medicinal , Silymarin , Humans , Silymarin/pharmacology , Silymarin/therapeutic use , Silymarin/chemistry , Cross-Sectional Studies , Multimorbidity , Antioxidants/pharmacology , Antioxidants/therapeutic use , Oxidative Stress , Anti-Inflammatory Agents/pharmacology
7.
Mol Biol Rep ; 50(1): 85-95, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36309613

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is an invasive phenotype with undesirable clinical features, poor prognosis, and therapy resistance. Ketoprofen is a Non-steroidal anti-inflammatory drug (NSAID) with anti-tumor properties. AIM: To investigate the effects of Ketoprofen on apoptosis and autophagy in TNBC cell line MDA-MB-231. METHODS: The cytotoxic activity of Ketoprofen was assayed by the MTS method. Flowcytometry was utilized to measure the number of apoptotic MDA-MB-231 cells. The expression levels of apoptosis and autophagy markers, JAK2 and STAT3 were determined using quantitative real time-PCR (qRT-PCR) and western blotting methods. RESULTS: Ketoprofen significantly decreased the proliferation of MDA-MB-231 cells compared to control cells. It also considerably induced apoptosis and apoptotic markers in these cells in comparison to controls. Treating the MADA-MB-231 cell line with Ketoprofen had an inhibitory effect on autophagy markers in this cell line. The use of FasL, as a death ligand, and ZB4, as an antibody that blocks the extrinsic pathway of apoptosis, revealed the involvement of the extrinsic pathway in the apoptosis-stimulating effect of Ketoprofen in the MADA-MB-231 cell line. Ketoprofen also hindered the phosphorylation and activation of JAK2 and STAT molecules leading to the inhibition of the JAK/STAT pathway in this TNBC cell line. CONCLUSION: The outcomes of this study uncovered the anti-TNBC activity of Ketoprofen by inducing apoptosis and inhibiting viability and autophagy in MADA-MB-231 cells. Our data also suggested that Ketoprofen impedes apoptosis in TNBC cells by two different mechanisms including the induction of the extrinsic apoptotic pathway and inhibition of the JAK/STAT signaling.


Subject(s)
Ketoprofen , Triple Negative Breast Neoplasms , Humans , Ketoprofen/pharmacology , Ketoprofen/therapeutic use , Triple Negative Breast Neoplasms/genetics , Signal Transduction , Janus Kinases/metabolism , Cell Line, Tumor , STAT Transcription Factors/metabolism , Apoptosis , Cell Proliferation , Autophagy
8.
Future Oncol ; 18(38): 4209-4231, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36519554

ABSTRACT

Increasing data have shown the significance of various miRNAs in malignancy. In this regard, parallel to its biological role in normal tissues, miRNA-128 (miR-128) has been found to play an essential immunomodulatory function in the process of cancer initiation and development. The occurrence of the aberrant expression of miR-128 in tumors and the unique properties of miRNAs raise the prospect of their use as biomarkers and the next generation of molecular anticancer therapies. The function of miR-128 in malignancies such as breast, prostate, colorectal, gastric, pancreatic, esophageal, cervical, ovarian and bladder cancers and hepatocellular carcinoma is discussed in this review. Finally, the effect of exosomal miR-128 on cancer resistance to therapeutics and cancer immunotherapy in certain malignancies is highlighted.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Urogenital Neoplasms , Male , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Prostate/metabolism
9.
Arch Biochem Biophys ; 730: 109395, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36176224

ABSTRACT

Cancer is a category of disorders characterized by excessive cell proliferation with the ability to infiltrate or disseminate to other organs of the body. Mitochondrial dysfunction, as one of the most prominent hallmarks of cancer cells, has been related to the onset and development of various cancers. Mitofusin 2 (MFN2) is a major mediator of mitochondrial fusion, endoplasmic reticulum (ER)-mitochondria interaction, mitophagy and axonal transport of mitochondria. Available data have shown that MFN2, which its alterations have been associated with mitochondrial dysfunction, could affect cancer initiation and progression. In fact, it showed that MFN2 may have a double-edged sword effect on cancer fate. Precisely, it demonstrated that MFN2, as a tumor suppressor, induces cancer cell apoptosis and inhibits cell proliferation via Ca2+ and Bax-mediated apoptosis and increases P21 and p27 levels, respectively. It also could suppress cell survival via inhibiting PI3K/Akt, Ras-ERK1/2-cyclin D1 and mTORC2/Akt signaling pathways. On the other hand, MFN2, as an oncogene, could increase cancer invasion via snail-mediated epithelial-mesenchymal transition (EMT) and in vivo tumorigenesis. While remarkable progress has been achieved in recent decades, further exploration is required to elucidate whether MFN2 could be a friend or it's an enemy. This study aimed to highlight the different functions of MFN2 in various cancers.


Subject(s)
GTP Phosphohydrolases , Neoplasms , Humans , bcl-2-Associated X Protein , Cyclin D1 , GTP Phosphohydrolases/metabolism , Mechanistic Target of Rapamycin Complex 2 , Mitochondrial Proteins/metabolism , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt/metabolism
10.
Cell Signal ; 100: 110471, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36122884

ABSTRACT

Nowadays, emerging data demonstrate that the toll-like receptor (TLR) signaling pathway plays an important role in the progression of inflammatory atherosclerosis. Indeed, dysregulated TLR signaling pathway could be a cornerstone of inflammation and atherosclerosis, which contributes to the development of cardiovascular diseases. It is interesting to note that this pathway is heavily controlled by several mechanisms, such as epigenetic factors in which the role of non-coding RNAs (ncRNAs), particularly microRNAs and long noncoding RNAs as well as circular RNAs in the pathogenesis of atherosclerosis has been well studied. Recent years have seen a significant surge in the amount of research exploring the interplay between ncRNAs and TLR signaling pathway downstream targets in the development of atherosclerosis; however, there is still considerable room for improvement in this field. The current study was designed to review underlying mechanisms of TLR signaling pathway and ncRNA interactions to shed light on therapeutic implications in patients with atherosclerosis.

11.
Stem Cell Res Ther ; 13(1): 366, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35902958

ABSTRACT

The multipotency property of mesenchymal stem cells (MSCs) has attained worldwide consideration because of their immense potential for immunomodulation and their therapeutic function in tissue regeneration. MSCs can migrate to tissue injury areas to contribute to immune modulation, secrete anti-inflammatory cytokines and hide themselves from the immune system. Certainly, various investigations have revealed anti-inflammatory, anti-aging, reconstruction, and wound healing potentials of MSCs in many in vitro and in vivo models. Moreover, current progresses in the field of MSCs biology have facilitated the progress of particular guidelines and quality control approaches, which eventually lead to clinical application of MSCs. In this literature, we provided a brief overview of immunoregulatory characteristics and immunosuppressive activities of MSCs. In addition, we discussed the enhancement, utilization, and therapeutic responses of MSCs in neural, liver, kidney, bone, heart diseases, and wound healing.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Immunomodulation , Regenerative Medicine , Wound Healing
12.
Crit Rev Anal Chem ; : 1-10, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35831973

ABSTRACT

In today's world, which is entangled with numerous foodborne pathogenic bacteria and viruses, it appears to be essential to rethink detection methods of these due to the importance of food safety in our lives. The vast majority of detection methods for foodborne pathogenic bacteria and viruses have suffered from sensitivity and selectivity due to the small size of these pathogens. Besides, these types of sensing approaches can improve on-site detection platforms in the fields of food safety. In recent, microfluidics systems as new emerging types of portable sensing approaches can introduce efficient and simple biodevice by integration with several analytical methods such as electrochemical, optical and colorimetric techniques. Additionally, taking advantage of aptamer as a selective bioreceptor in the sensing of microfluidics system has provided selective, sensitive, portable and affordable sensing approaches. Furthermore, some papers use increased data transferability ability and computational power of these sensing platforms by exploiting smartphones. In this review, we attempted to provide an overview of the current state of the recent aptasensor based on microfluidic for screening of foodborne pathogenic bacteria and viruses. Working strategies, benefits and disadvantages of these sensing approaches are briefly discussed.

13.
Aquac Nutr ; 2022: 1861761, 2022.
Article in English | MEDLINE | ID: mdl-36860450

ABSTRACT

The present study was conducted to clarify the effects of Lactobacillus salivarius (LS) ATCC 11741 and pectin (PE) on growth performance, digestive enzymes activity, gut microbiota composition, immune parameters, antioxidant defense as well as disease resistance against Aeromonas hydrophila in narrow-clawed crayfish, Postantacus leptodactylus. During 18 weeks trial feeding, 525 narrow-clawed crayfish juvenile (8.07 ± 0.1 g) fed with seven experimental diets including control (basal diet), LS1 (1 × 107 CFU/g), LS2 (1 × 109 CFU/g), PE1 (5 g/kg), PE2 (10 g/kg), LS1PE1 (1 × 107 CFU/g +5 g/kg), and LS2PE2 (1 × 109 CFU/g +10 g/kg). After 18 weeks, growth parameters (final weight, weight gain, and specific growth rate) and feed conversion rate were significantly improved in all treatments (P < 0.05). Besides, diets incorporated with LS1PE1 and LS2PE2 significantly increased the activity of amylase and protease enzymes compared to LS1, LS2, and control groups (P < 0.05). Microbiological analyses revealed that the total heterotrophic bacteria count (TVC) and lactic acid bacteria (LAB) of narrow-clawed crayfish fed diets containing LS1, LS2, LS1PE1, and LS2PE2 were higher than control group. The highest total haemocyte count (THC), large-granular (LGC) and semigranular cells (SGC) count, and hyaline count (HC) was obtained in LS1PE1 (P < 0.05). Similarly, higher immunity activity (lysozyme (LYZ), phenoloxidase (PO), nitroxidesynthetase (NOs), and alkaline phosphatase (AKP)) observed in the LS1PE1 treatment compared to the control group (P < 0.05). The glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity remarkably enhanced in LS1PE1 and LS2PE2, while malondialdehyde (MDA) content reduced in these two treatments. In addition, specimens belonging to LS1, LS2, PE2, LS1PE1, and LS2PE2 groups presented higher resistance against A. hydrophila compared to the control group. In conclusion, feeding narrow-clawed crayfish with synbiotic had higher efficiency on growth parameters, immunocompetence, and disease resistance compared to single consumption of prebiotics and probiotics.

SELECTION OF CITATIONS
SEARCH DETAIL
...