Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Neuropathol Exp Neurol ; 80(8): 776-788, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34363662

ABSTRACT

Skeletal muscle atrophy may occur with disease, injury, decreased muscle use, starvation, and normal aging. No reliably effective treatments for atrophy are available, thus research into the mechanisms contributing to muscle loss is essential. The ERG1A K+ channel contributes to muscle loss by increasing ubiquitin proteasome proteolysis (UPP) in the skeletal muscle of both unweighted and cachectic mice. Because the mechanisms which produce atrophy vary based upon the initiating factor, here we investigate atrophy produced by denervation. Using immunohistochemistry and immunoblots, we demonstrate that ERG1A protein abundance increases significantly in the Gastrocnemius muscle of rodents 7 days after both sciatic nerve transection and hind limb unweighting. Further, we reveal that ectopic expression of a Merg1a encoded plasmid in normal mouse Gastrocnemius muscle has no effect on activity of the NFκB transcription factor family, a group of proteins which contribute to muscle atrophy by modulation of the UPP. Further, although NFκB activity increases significantly after denervation, we show that expression of a plasmid encoding a dominant negative Merg1a mutant in Gastrocnemius muscle prior to denervation, has no effect on NFκB activity. Thus, although the ERG1A K+ channel increases UPP, it does not do so through modulation of NFκB transcription factors.


Subject(s)
ERG1 Potassium Channel/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Animals , Denervation/adverse effects , ERG1 Potassium Channel/genetics , Hindlimb Suspension/adverse effects , Male , Mice , Muscle, Skeletal/innervation , Muscle, Skeletal/physiopathology , Muscular Atrophy/etiology , NF-kappa B/metabolism , Proteolysis , Rats , Rats, Wistar
2.
Sci Rep ; 7(1): 3911, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28634379

ABSTRACT

In this work, the effect of weak acid anions on the ammonia removal has been extensively studied for the process of selective catalytic wet air oxidation (CWAO) of ammonia to nitrogen. It is found that the presence of weak acid anions can effectively enhance the ammonia conversion and selectivity towards nitrogen. The combination between the weak acid anions and H+ to produce weak acid molecules is responsible for such enhancement. Firstly, the H+ consumption of weak acid anions can increase the NH3 concentration and thus the reactivity of ammonia oxidation, due to the shift to NH3 on the equilibrium of NH4+/NH3. Secondly, the competition combination with H+ between the weak acid anions and NO2- can increase the concentration of NO2- and thus boosts the disproportionation reaction between NH4+ and NO2- to produce nitrogen.

3.
Eur J Transl Myol ; 24(3): 3319, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-26913136

ABSTRACT

Skeletal muscle (SKM) atrophy is a potentially debilitating condition induced by muscle disuse, denervation, many disease states, and aging. The ubiquitin proteasome pathway (UPP) contributes greatly to the protein loss suffered in muscle atrophy. The MERG1a K(+) channel is known to induce UPP activity and atrophy in SKM. It has been further demonstrated that the mouse ether-a-gogo-related gene (Merg)1a channel modulates expression of MURF1, an E3 ligase component of the UPP, while it does not affect expression of the UPP E3 ligase Mafbx/ATROGIN1. Because the UBR2 E3 ligase is known to participate in SKM atrophy, we have investigated the effect of Merg1a expression and hind limb suspension on Ubr2 expression. Here, we report that hind limb suspension results in a significant 25.6% decrease in mouse gastrocnemius muscle fiber cross sectional area (CSA) and that electro-transfer of Merg1a alone into gastrocnemius muscles yields a 15.3% decrease in CSA after 7 days. More interestingly, we discovered that hind limb suspension caused a significant 8-fold increase in Merg1a expression and a significant 4.7-fold increase in Ubr2 transcript after 4 days, while electro-transfer of Merg1a into gastrocnemius muscles resulted in a significant 6.2-fold increase in Merg1a transcript after 4 days but had no effect on Ubr2 expression. In summary, the MERG1a K(+) channel, known to induce atrophy and MURF1 E3 ligase expression, does not affect UBR2 E3 ligase transcript levels. Therefore, to date, the MERG1a channel's contribution to UPP activity appears mainly to be through up-regulation of Murf1 gene expression.

SELECTION OF CITATIONS
SEARCH DETAIL
...