Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Prolif ; 56(1): e13350, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36321378

ABSTRACT

OBJECTIVES: Elimination of brain tumour initiating cells (BTICs) is important for the good prognosis of malignant brain tumour treatment. To develop a novel strategy targeting BTICs, we studied NR2E1(TLX) involved self-renewal mechanism of BTICs and explored the intervention means. MATERIALS AND METHODS: NR2E1 and its interacting protein-LSD1 in BTICs were studied by gene interference combined with cell growth, tumour sphere formation, co-immunoprecipitation and chromatin immunoprecipitation assays. NR2E1 interacting peptide of LSD1 was identified by Amide Hydrogen/Deuterium Exchange and Mass Spectrometry (HDX-MS) and analysed by in vitro functional assays. The in vivo function of the peptide was examined with intracranial mouse model by transplanting patient-derived BTICs. RESULTS: We found NR2E1 recruits LSD1, a lysine demethylase, to demethylate mono- and di-methylated histone 3 Lys4 (H3K4me/me2) at the Pten promoter and repress its expression, thereby promoting BTIC proliferation. Using Amide Hydrogen/Deuterium Exchange and Mass Spectrometry (HDX-MS) method, we identified four LSD1 peptides that may interact with NR2E1. One of the peptides, LSD1-197-211 that locates at the LSD1 SWIRM domain, strongly inhibited BTIC proliferation by promoting Pten expression through interfering NR2E1 and LSD1 function. Furthermore, overexpression of this peptide in human BTICs can inhibit intracranial tumour formation. CONCLUSION: Peptide LSD1-197-211 can repress BTICs by interfering the synergistic function of NR2E1 and LSD1 and may be a promising lead peptide for brain tumour therapy in future.


Subject(s)
Histone Demethylases , Peptides , Animals , Humans , Mice , Amides , Brain/metabolism , Cell Proliferation , Deuterium , Histone Demethylases/metabolism , Neoplastic Stem Cells/metabolism , Orphan Nuclear Receptors/metabolism , Peptides/pharmacology , Receptors, Cytoplasmic and Nuclear/metabolism
2.
Sci Rep ; 4: 4896, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24810720

ABSTRACT

Methylation of DNA CpG sites is a major mechanism of epigenetic gene silencing and plays important roles in cell division, development and carcinogenesis. One of its regulators is the 64-residue C-terminal Transcriptional Repressor Domain (the TRD) of MBD1, which recruits several repressor proteins such as MCAF1, HDAC3 and MPG that are essential for the gene silencing. Using NMR spectroscopy, we have characterized the solution structure of the C-terminus of MBD1 (MBD1-c, residues D507 to Q605), which included the TRD (A529 to P592). Surprisingly, the MBD1-c is intrinsically disordered. Despite its lack of a tertiary folding, MBD1-c could still bind to different partner proteins in a selective manner. MPG and MCAF1Δ8 showed binding to both the N-terminal and C-terminal residues of MBD1-c but HDAC3 preferably bound to the C-terminal region. This study reveals how MBD1-c discriminates different binding partners, and thus, expands our understanding of the mechanisms of gene regulation by MBD1.


Subject(s)
DNA-Binding Proteins/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism , Binding Sites/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cells, Cultured , CpG Islands/genetics , DNA Methylation/genetics , DNA-Binding Proteins/genetics , Epigenesis, Genetic/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Silencing , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Transcription Factors/genetics , Transcription, Genetic/genetics
3.
Cell Rep ; 7(1): 166-79, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24656812

ABSTRACT

The chromosome passenger complex (CPC) must relocate from anaphase chromosomes to the cell equator for successful cytokinesis. Although this landmark event requires the mitotic kinesin MKlp2, the spatiotemporal mechanistic basis remains elusive. Here, we show that phosphoregulation of MKlp2 by the mitotic kinase Cdk1/cyclin B1 coordinates proper mitotic transition with CPC relocation. We identified multiple Cdk1/cyclin B1 phosphorylation sites within the stalk and C-terminal tail that inhibit microtubule binding and bundling, oligomerization/clustering, and chromosome targeting of MKlp2. Specifically, inhibition of these abilities by Cdk1/cyclin B1 phosphorylation is essential for proper early mitotic progression. Upon anaphase onset, however, reversal of Cdk1/cyclin B1 phosphorylation promotes MKlp2-CPC complex formation and relocates the CPC from anaphase chromosomes for successful cytokinesis. Thus, we propose that phosphoregulation of MKlp2 by Cdk1/cyclin B1 ensures that activation of MKlp2 kinesin and relocation of the CPC occur at the appropriate time and space for proper mitotic progression and genomic stability.


Subject(s)
Cyclin-Dependent Kinases/metabolism , Kinesins/metabolism , Amino Acid Sequence , Animals , CDC2 Protein Kinase , Cyclin B1/metabolism , Cyclin-Dependent Kinases/genetics , Cytokinesis/physiology , Enzyme Activation , Genomic Instability , HeLa Cells , Humans , Kinesins/genetics , Mitosis/physiology , Molecular Sequence Data , Mutagenesis, Site-Directed , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...