Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stress Chaperones ; 24(3): 647-659, 2019 05.
Article in English | MEDLINE | ID: mdl-31073901

ABSTRACT

Assessing species thermal tolerance requires identification of their thermal strategies and evaluation of their ability to cope with temperature fluctuations. The mobilization of the molecular heat stress response (HSR), which is a proxy for the thermal tolerance, would be part of the strategy of species colonizing highly variable thermal environments. We here investigate multiple parameters of the HSR in the deep-sea vent shrimp Rimicaris exoculata that colonizes such environments. The set points of the HSR induction, compared to those of the coastal species Palaemonetes varians, clearly reflect a high thermotolerance in this species, while the HSR is proved to be rarely mobilized in the R. exoculata natural populations. Finally, the compilation of multiple parameters such as the upper thermal limit and several thresholds of the HSR, as well as thermal behavior observations, allows us to provide a more accurate picture of the combination and complementarity of strategies that can account for the overall thermal tolerance of the species.


Subject(s)
Body Temperature Regulation/physiology , Decapoda/metabolism , HSP70 Heat-Shock Proteins/metabolism , Thermotolerance/physiology , Animals , Hydrothermal Vents
2.
PLoS One ; 8(5): e64074, 2013.
Article in English | MEDLINE | ID: mdl-23734185

ABSTRACT

The thermal limit for metazoan life, expected to be around 50°C, has been debated since the discovery of the Pompeii worm Alvinella pompejana, which colonizes black smoker chimney walls at deep-sea vents. While indirect evidence predicts body temperatures lower than 50°C, repeated in situ temperature measurements depict an animal thriving at temperatures of 60°C and more. This controversy was to remain as long as this species escaped in vivo investigations, due to irremediable mortalities upon non-isobaric sampling. Here we report from the first heat-exposure experiments with live A. pompejana, following isobaric sampling and subsequent transfer in a laboratory pressurized aquarium. A prolonged (2 hours) exposure in the 50-55°C range was lethal, inducing severe tissue damages, cell mortalities and triggering a heat stress response, therefore showing that Alvinella's upper thermal limit clearly is below 55°C. A comparison with hsp70 stress gene expressions of individuals analysed directly after sampling in situ confirms that Alvinella pompejana does not experience long-term exposures to temperature above 50°C in its natural environment. The thermal optimum is nevertheless beyond 42°C, which confirms that the Pompeii worm ranks among the most thermotolerant metazoans.


Subject(s)
Adaptation, Physiological/physiology , Heat-Shock Response/physiology , Hot Temperature , Polychaeta/physiology , Adaptation, Physiological/genetics , Animals , Environment, Controlled , Gene Expression Profiling , HSP70 Heat-Shock Proteins/genetics , Heat-Shock Response/genetics , Molecular Sequence Data , Polychaeta/genetics , Pressure , Reverse Transcriptase Polymerase Chain Reaction , Temperature
3.
J Synchrotron Radiat ; 16(Pt 4): 513-23, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19535866

ABSTRACT

A recently developed portable multi-anvil device for in situ angle-dispersive synchrotron diffraction studies at pressures up to 25 GPa and temperatures up to 2000 K is described. The system consists of a 450 ton V7 Paris-Edinburgh press combined with a Stony Brook ;T-cup' multi-anvil stage. Technical developments of the various modifications that were made to the initial device in order to adapt the latter to angular-dispersive X-ray diffraction experiments are fully described, followed by a presentation of some results obtained for various systems, which demonstrate the power of this technique and its potential for crystallographic studies. Such a compact large-volume set-up has a total mass of only 100 kg and can be readily used on most synchrotron radiation facilities. In particular, several advantages of this new set-up compared with conventional multi-anvil cells are discussed. Possibilities of extension of the (P,T) accessible domain and adaptation of this device to other in situ measurements are given.

4.
Phys Rev Lett ; 99(17): 175501, 2007 Oct 26.
Article in English | MEDLINE | ID: mdl-17995343

ABSTRACT

We report neutron scattering data which reveal the central role of phonon softening leading to a negative melting line, solid-state amorphization, and negative thermal expansion of ice. We find that pressure-induced amorphization is due to mechanical melting at low temperatures, while at higher temperatures amorphization is governed by thermal melting (violations of Born's and Lindemann's criteria, respectively). This confirms earlier conjectures of a crossover between two distinct amorphization mechanisms and provides a natural explanation for the strong annealing observed in high-density amorphous ice.

5.
J Chem Phys ; 121(17): 8430-4, 2004 Nov 01.
Article in English | MEDLINE | ID: mdl-15511166

ABSTRACT

The structure of amorphous ice under pressure has been studied by molecular dynamics at 160 K. The starting low-density phase undergoes significant changes as the density increases, and at rho=1.51 g/cm(3) our calculated g(OO)(r) is in excellent agreement with in situ neutron diffraction data obtained at 1.8 GPa and 100 K on very high density amorphous ice made at 150 K. As the system is further compressed, in the theoretical simulations, up to rho=1.90 g/cm(3), the structural modifications are continuous up to the highest density. The analysis of orientational distributions reveals that dense amorphous ice is characterized by major distortions of the tetrahedral geometry, and that the pressure structural changes, already observed experimentally at lower densities, can be interpreted as a trend towards a disordered closed-packed structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...