Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
PLoS Negl Trop Dis ; 18(4): e0011842, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38630843

ABSTRACT

BACKGROUND: Zika virus (ZIKV) has spread to five of the six World Health Organization (WHO) regions. Given the substantial number of asymptomatic infections and clinical presentations resembling those of other arboviruses, estimating the true burden of ZIKV infections is both challenging and essential. Therefore, we conducted a systematic review and meta-analysis of seroprevalence studies of ZIKV IgG in asymptomatic population to estimate its global impact and distribution. METHODOLOGY/PRINCIPAL FINDINGS: We conducted extensive searches and compiled a collection of articles published from Jan/01/2000, to Jul/31/2023, from Embase, Pubmed, SciELO, and Scopus databases. The random effects model was used to pool prevalences, reported with their 95% confidence interval (CI), a tool to assess the risk of study bias in prevalence studies, and the I2 method for heterogeneity (PROSPERO registration No. CRD42023442227). Eighty-four studies from 49 countries/territories, with a diversity of study designs and serological tests were included. The global seroprevalence of ZIKV was 21.0% (95%CI 16.1%-26.4%). Evidence of IgG antibodies was identified in all WHO regions, except for Europe. Seroprevalence correlated with the epidemics in the Americas (39.9%, 95%CI:30.0-49.9), and in some Western Pacific countries (15.6%, 95%CI:8.2-24.9), as well as with recent and past circulation in Southeast Asia (22.8%, 95%CI:16.5-29.7), particularly in Thailand. Additionally, sustained low circulation was observed in Africa (8.4%, 95%CI:4.8-12.9), except for Gabon (43.7%), and Burkina Faso (22.8%). Although no autochthonous transmission was identified in the Eastern Mediterranean, a seroprevalence of 16.0% was recorded. CONCLUSIONS/SIGNIFICANCE: The study highlights the high heterogeneity and gaps in the distribution of seroprevalence. The implementation of standardized protocols and the development of tests with high specificity are essential for ensuring a valid comparison between studies. Equally crucial are vector surveillance and control methods to reduce the risk of emerging and re-emerging ZIKV outbreaks, whether caused by Ae. aegypti or Ae. albopictus or by the Asian or African ZIKV.


Subject(s)
Antibodies, Viral , Zika Virus Infection , Zika Virus , Humans , Seroepidemiologic Studies , Zika Virus Infection/epidemiology , Zika Virus/immunology , Antibodies, Viral/blood , Immunoglobulin G/blood , Global Health , Asymptomatic Infections/epidemiology
2.
Viruses ; 15(7)2023 06 27.
Article in English | MEDLINE | ID: mdl-37515135

ABSTRACT

Among emerging zoonotic pathogens, mosquito-borne viruses (MBVs) circulate between vertebrate animals and mosquitoes and represent a serious threat to humans via spillover from enzootic cycles to the human community. Active surveillance of MBVs in their vectors is therefore essential to better understand and prevent spillover and emergence, especially at the human-animal interface. In this study, we assessed the presence of MBVs using molecular and phylogenetic methods in mosquitoes collected along an ecological gradient ranging from rural urbanized areas to highland forest areas in northern Thailand. We have detected the presence of insect specific flaviviruses in our samples, and the presence of the emerging zoonotic Tembusu virus (TMUV). Reported for the first time in 1955 in Malaysia, TMUV remained for a long time in the shadow of other flaviviruses such as dengue virus or the Japanese encephalitis virus. In this study, we identified two new TMUV strains belonging to cluster 3, which seems to be endemic in rural areas of Thailand and highlighted the genetic specificities of this Thai cluster. Our results show the active circulation of this emerging flavivirus in Thailand and the need for continuous investigation on this poorly known but threatening virus in Asia.


Subject(s)
Culex , Culicidae , Flavivirus , Animals , Humans , Phylogeny , Thailand/epidemiology , Mosquito Vectors , Flavivirus/genetics
3.
PLoS Pathog ; 19(3): e1011224, 2023 03.
Article in English | MEDLINE | ID: mdl-36996041

ABSTRACT

Mosquito transmission of dengue viruses to humans starts with infection of skin resident cells at the biting site. There is great interest in identifying transmission-enhancing factors in mosquito saliva in order to counteract them. Here we report the discovery of high levels of the anti-immune subgenomic flaviviral RNA (sfRNA) in dengue virus 2-infected mosquito saliva. We established that sfRNA is present in saliva using three different methods: northern blot, RT-qPCR and RNA sequencing. We next show that salivary sfRNA is protected in detergent-sensitive compartments, likely extracellular vesicles. In support of this hypothesis, we visualized viral RNAs in vesicles in mosquito saliva and noted a marked enrichment of signal from 3'UTR sequences, which is consistent with the presence of sfRNA. Furthermore, we show that incubation with mosquito saliva containing higher sfRNA levels results in higher virus infectivity in a human hepatoma cell line and human primary dermal fibroblasts. Transfection of 3'UTR RNA prior to DENV2 infection inhibited type I and III interferon induction and signaling, and enhanced viral replication. Therefore, we posit that sfRNA present in salivary extracellular vesicles is delivered to cells at the biting site to inhibit innate immunity and enhance dengue virus transmission.


Subject(s)
Aedes , Culicidae , Dengue , Flavivirus , Animals , Humans , Flavivirus/genetics , Subgenomic RNA , Saliva/metabolism , 3' Untranslated Regions , Virus Replication , RNA, Viral/genetics , RNA, Viral/metabolism
4.
Viruses ; 13(11)2021 11 03.
Article in English | MEDLINE | ID: mdl-34835018

ABSTRACT

Mayaro virus (MAYV) is an emergent alphavirus that causes MAYV fever. It is often associated with debilitating symptoms, particularly arthralgia and myalgia. MAYV infection is becoming a considerable health issue that, unfortunately, lacks a specific antiviral treatment. Favipiravir, a broad-spectrum antiviral drug, has recently been shown to exert anti-MAYV activity in vitro. In the present study, the potential of Favipiravir to inhibit MAYV replication in an in vivo model was evaluated. Immunocompetent mice were orally administrated 300 mg/kg/dose of Favipiravir at pre-, concurrent-, or post-MAYV infection. The results showed a significant reduction in infectious viral particles and viral RNA transcripts in the tissues and blood of the pre- and concurrently treated infected mice. A significant reduction in the presence of both viral RNA transcript and infectious viral particles in the tissue and blood of pre- and concurrently treated infected mice was observed. By contrast, Favipiravir treatment post-MAYV infection did not result in a reduction in viral replication. Interestingly, Favipiravir strongly decreased the blood levels of the liver disease markers aspartate- and alanine aminotransferase in the pre- and concurrently treated MAYV-infected mice. Taken together, these results suggest that Favipiravir is a potent antiviral drug when administered in a timely manner.


Subject(s)
Alphavirus Infections/drug therapy , Alphavirus/drug effects , Amides/pharmacology , Antiviral Agents/pharmacology , Pyrazines/pharmacology , Alanine Transaminase/drug effects , Alphavirus Infections/virology , Animals , Aspartate Aminotransferases/drug effects , Cell Line , Chlorocebus aethiops , Disease Models, Animal , Female , Liver , Mice , Mice, Inbred C57BL , Vero Cells , Virus Replication/drug effects
5.
Pathogens ; 10(8)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34451474

ABSTRACT

Reported for the first time in 1955 in Malaysia, Tembusu virus (TMUV) remained, for a long time, in the shadow of flaviviruses with human health importance such as dengue virus or Japanese encephalitis virus. However, since 2010 and the first large epidemic in duck farms in China, the threat of its emergence on a large scale in Asia or even its spillover into the human population is becoming more and more significant. This review aims to report current knowledge on TMUV from viral particle organization to the development of specific vaccines and therapeutics, with a particular focus on host-virus interactions.

6.
Viruses ; 13(3)2021 03 11.
Article in English | MEDLINE | ID: mdl-33799906

ABSTRACT

Mayaro virus (MAYV) and chikungunya virus (CHIKV) are known for their arthrotropism, but accumulating evidence shows that CHIKV infections are occasionally associated with serious neurological complications. However, little is known about the capacity of MAYV to invade the central nervous system (CNS). We show that human neural progenitors (hNPCs), pericytes and astrocytes are susceptible to MAYV infection, resulting in the production of infectious viral particles. In primary astrocytes, MAYV, and to a lesser extent CHIKV, elicited a strong antiviral response, as demonstrated by an increased expression of several interferon-stimulated genes, including ISG15, MX1 and OAS2. Infection with either virus led to an enhanced expression of inflammatory chemokines, such as CCL5, CXCL10 and CXCL11, whereas MAYV induced higher levels of IL-6, IL-12 and IL-15 in these cells. Moreover, MAYV was more susceptible than CHIKV to the antiviral effects of both type I and type II interferons. Taken together, this study shows that although MAYV and CHIKV are phylogenetically related, they induce different types of antiviral responses in astrocytes. This work is the first to evaluate the potential neurotropism of MAYV and shows that brain cells and particularly astrocytes and hNPCs are permissive to MAYV, which, consequently, could lead to MAYV-induced neuropathology.


Subject(s)
Alphavirus Infections/immunology , Alphavirus/immunology , Astrocytes/immunology , Astrocytes/virology , Brain/immunology , 2',5'-Oligoadenylate Synthetase/metabolism , Alphavirus Infections/pathology , Animals , Brain/virology , Cell Line , Chemokine CCL5/metabolism , Chemokine CXCL10/metabolism , Chemokine CXCL11/metabolism , Chikungunya Fever/immunology , Chikungunya virus/immunology , Chlorocebus aethiops , Cytokines/metabolism , Humans , Interferon Type I/immunology , Interferon-gamma/immunology , Myxovirus Resistance Proteins/metabolism , Neural Stem Cells/virology , Pericytes/virology , Ubiquitins/metabolism , Vero Cells
7.
Pathogens ; 10(4)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918691

ABSTRACT

Chikungunya and Zika viruses, both transmitted by mosquito vectors, have globally re-emerged over for the last 60 years and resulted in crucial social and economic concerns. Presently, there is no specific antiviral agent or vaccine against these debilitating viruses. Understanding viral-host interactions is needed to develop targeted therapeutics. However, there is presently limited information in this area. In this review, we start with the updated virology and replication cycle of each virus. Transmission by similar mosquito vectors, frequent co-circulation, and occurrence of co-infection are summarized. Finally, the targeted host proteins/factors used by the viruses are discussed. There is an urgent need to better understand the virus-host interactions that will facilitate antiviral drug development and thus reduce the global burden of infections caused by arboviruses.

8.
Pathogens ; 9(9)2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32911824

ABSTRACT

Mayaro virus (MAYV), isolated for the first time in Trinidad and Tobago, has captured the attention of public health authorities worldwide following recent outbreaks in the Americas. It has a propensity to be exported outside its original geographical range, because of the vast distribution of its vectors. Moreover, most of the world population is immunologically naïve with respect to infection with MAYV which makes this virus a true threat. The recent invasion of several countries by Aedesalbopictus underscores the risk of potential urban transmission of MAYV in both tropical and temperate regions. In humans, the clinical manifestations of MAYV disease range from mild fever, rash, and joint pain to arthralgia. In the absence of a licensed vaccine and clinically proven therapeutics against Mayaro fever, prevention focuses mainly on household mosquito control. However, as demonstrated for other arboviruses, mosquito control is rather inefficient for outbreak management and alternative approaches to contain the spread of MAYV are therefore necessary. Despite its strong epidemic potential, little is currently known about MAYV. This review addresses various aspects of MAYV, including its epidemiology, vector biology, mode of transmission, and clinical complications, as well as the latest developments in MAYV diagnosis.

9.
Viruses ; 11(10)2019 10 09.
Article in English | MEDLINE | ID: mdl-31601017

ABSTRACT

Mayaro (MAYV) is an emerging arthropod-borne virus belonging to the Alphavirus genus of the Togaviridae family. Although forest-dwelling Haemagogus mosquitoes have been considered as its main vector, the virus has also been detected in circulating Aedes ssp mosquitoes. Here we assess the susceptibility of Aedes aegypti and Aedes albopictus to infection with MAYV and their innate immune response at an early stage of infection. Aedes albopictus was more susceptible to infection with MAYV than Ae. aegypti. Analysis of transcript levels of twenty immunity-related genes by real-time PCR in the midgut of both mosquitoes infected with MAYV revealed increased expression of several immune genes, including CLIP-domain serine proteases, the anti-microbial peptides defensin A, E, cecropin E, and the virus inducible gene. The regulation of certain genes appeared to be Aedes species-dependent. Infection of Ae. aegypti with MAYV resulted in increased levels of myeloid differentiation2-related lipid recognition protein (ML26A) transcripts, as compared to Ae. albopictus. Increased expression levels of thio-ester-containing protein 22 (TEP22) and Niemann-Pick type C1 (NPC1) gene transcripts were observed in infected Ae. albopictus, but not Ae. aegypti. The differences in these gene expression levels during MAYV infection could explain the variation in susceptibility observed in both mosquito species.


Subject(s)
Aedes/virology , Alphavirus Infections/transmission , Alphavirus/immunology , Immunity, Innate , Aedes/immunology , Animals , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , Gene Expression/immunology , Gene Expression Profiling , Immunity, Innate/genetics , Mosquito Vectors/virology , Real-Time Polymerase Chain Reaction , Serine Proteases/genetics , Serine Proteases/metabolism
10.
PLoS One ; 14(8): e0221179, 2019.
Article in English | MEDLINE | ID: mdl-31415663

ABSTRACT

Dengue fever is caused by dengue viruses (DENV) from the Flavivirus genus and is the most prevalent arboviral disease. DENV exists in four immunogenically distinct and genetically-related serotypes (DENV-1 to 4), each subdivided in genotypes. Despite the endemicity of all four DENV serotypes in Thailand, no prior study has characterized the circulation of DENV in the southern provinces of the country. To determine the genetic diversity of DENV circulating in Southern Thailand in 2015 and 2016, we investigated 46 viruses from 182 patients' sera confirmed positive for DENV by serological and Nested RT-PCR tests. Our dataset included 2 DENV-1, 20 DENV-2, 9 DENV-3 and 15 DENV-4. Phylogenetic analysis was performed on viral envelop sequences. This revealed that part of the identified genotypes from DENV-1 and DENV-4 had been predominant in Asia (genotype I for both serotypes), while genotype II for DENV-4 and the Cosmopolitan genotype DENV-2 were also circulating. Whereas DENV-3 genotype II had been predominantly detected in South East Asia during the previous decades, we found genotype III and genotype I in Southern Thailand. All DENV genotype identified in this study were closely related to contemporary strains circulating in Southeast Asian countries, emphasizing the regional circulation of DENV. These results provide new insights into the co-circulation of all four DENV serotypes in Southern Thailand, confirming the hyperendemicity of DENV in the region. These findings also suggest a new trend of dissemination for some DENV serotypes with a possible shift in genotype distribution; as recently observed in other Asian countries.


Subject(s)
Dengue Virus/genetics , Dengue/genetics , Genotype , Phylogeny , Serogroup , Adolescent , Adult , Child , Coculture Techniques , Dengue/epidemiology , Dengue Virus/isolation & purification , Female , Humans , Male , Middle Aged , Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Thailand/epidemiology
11.
EXCLI J ; 18: 467-476, 2019.
Article in English | MEDLINE | ID: mdl-31423125

ABSTRACT

Chikungunya virus (CHIKV), a re-emerging infectious arbovirus, causes Chikungunya fever that is characterized by fever, skin rash, joint pain, arthralgia and occasionally death. Despite it has been described for 66 years already, neither potential vaccine nor a specific drug is available yet. During CHIKV infection, interferon type I signaling pathway is stimulated and releases hundreds of interferon stimulated genes (ISGs). Our previous study reported that IFI16, a member of ISGs, is up-regulated during CHIKV virus infection and the suppression of the gene resulted in increased virus replication. Furthermore, our group also found that inflammasome activation can inhibit CHIKV infection in human foreskin cells (HFF1). Concomitantly, it has been reported that IFI16 activates the inflammasome to suppress virus infection. Therefore, we have hypothesized that IFI16 could be involved in CHIKV infection. In this study, we confirmed the expression level of IFI16 by Western blotting analysis and found that IFI16 was up-regulated following CHIKV infection in both HFF1 and human embryonic kidney cells. We next investigated its antiviral activity and found that forced expression of IFI16 completely restricted CHIKV infection while endogenous silencing of the gene markedly increased virus replication. Furthermore, we have discovered that IFI16 inhibited CHIKV replication, at least, in cell-to-cell transmission as well as the diffusion step. Interestingly, IFI16 also exerted its antiviral activity against Zika virus (ZIKV) infection, the global threat re-emerging virus can cause microcephaly in humans. Taken together, this study provides the first evidence of an antivirus activity of IFI16 during in vitro arbovirus infection, thus expanding its antiviral spectrum that paves the way to further development of antiviral drugs and vaccines.

12.
Emerg Microbes Infect ; 8(1): 1003-1016, 2019.
Article in English | MEDLINE | ID: mdl-31282298

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne Flavivirus that causes Zika disease with particular neurological complications, including Guillain-Barré Syndrome and congenital microcephaly. Although ZIKV has been shown to directly infect human neural progenitor cells (hNPCs), thereby decreasing their viability and growth, it is as yet unknown which of the cellular pathways involved in the disruption of neurogenesis are affected following ZIKV infection. By comparing the effect of two ZIKV strains in vitro on hNPCs, the differentiation process of the latter cells was found to lead to a decreased susceptibility to infection and cell death induced by each of the ZIKV strains, which was associated with an earlier and stronger antiviral innate immune response in infected, differentiated hNPCs, as compared to undifferentiated cells. Moreover, ZIKV modulated, both in hNPCs and in vivo in fetal brain in an experimental mouse model, the expression of the Notch pathway which is involved in cellular proliferation, apoptosis and differentiation during neurogenesis. These results show that the differentiation state of hNPCs is a significant factor contributing to the outcome of ZIKV infection and furthermore suggest that ZIKV infection might initiate early activation of the Notch pathway resulting in an abnormal differentiation process, implicated in ZIKV-induced brain injury.


Subject(s)
Neural Stem Cells/virology , Neurogenesis , Receptor, Notch1/metabolism , Zika Virus Infection/virology , Zika Virus/physiology , Animals , Apoptosis , Female , Humans , Mice , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Receptor, Notch1/genetics , Signal Transduction , Zika Virus/genetics , Zika Virus Infection/genetics , Zika Virus Infection/metabolism , Zika Virus Infection/physiopathology
13.
Int J Mol Sci ; 20(7)2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30959732

ABSTRACT

Chikungunya virus (CHIKV) and Zika virus (ZIKV) are emerging arboviruses that pose a worldwide threat to human health. Currently, neither vaccine nor antiviral treatment to control their infections is available. As the skin is a major viral entry site for arboviruses in the human host, we determined the global proteomic profile of CHIKV and ZIKV infections in human skin fibroblasts using Stable Isotope Labelling by Amino acids in Cell culture (SILAC)-based mass-spectrometry analysis. We show that the expression of the interferon-stimulated proteins MX1, IFIT1, IFIT3 and ISG15, as well as expression of defense response proteins DDX58, STAT1, OAS3, EIF2AK2 and SAMHD1 was significantly up-regulated in these cells upon infection with either virus. Exogenous expression of IFITs proteins markedly inhibited CHIKV and ZIKV replication which, accordingly, was restored following the abrogation of IFIT1 or IFIT3. Overexpression of SAMHD1 in cutaneous cells, or pretreatment of cells with the virus-like particles containing SAMHD1 restriction factor Vpx, resulted in a strong increase or inhibition, respectively, of both CHIKV and ZIKV replication. Moreover, silencing of SAMHD1 by specific SAMHD1-siRNA resulted in a marked decrease of viral RNA levels. Together, these results suggest that IFITs are involved in the restriction of replication of CHIKV and ZIKV and provide, as yet unreported, evidence for a proviral role of SAMHD1 in arbovirus infection of human skin cells.


Subject(s)
Chikungunya virus/physiology , Fibroblasts/metabolism , Fibroblasts/virology , SAM Domain and HD Domain-Containing Protein 1/metabolism , Skin/pathology , Virus Replication/physiology , Zika Virus/physiology , Cell Line , Chikungunya Fever/virology , Humans , Molecular Sequence Annotation , Protein Interaction Maps , Proteolysis , Up-Regulation , Viral Regulatory and Accessory Proteins/metabolism , Zika Virus Infection/virology
14.
PLoS One ; 13(10): e0206093, 2018.
Article in English | MEDLINE | ID: mdl-30359409

ABSTRACT

Zika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family. Although infection with ZIKV generally leads to mild disease, its recent emergence in the Americas has been associated with an increase in the development of the Guillain-Barré syndrome in adults, as well as with neurological complications, in particular congenital microcephaly, in new-borns. To date, little information is available on neuroinflammation induced by ZIKV, notably in microglial cells in the context of their metabolic activity, a series of chemical transformations that are essential for their growth, reproduction, structural maintenance and environmental responses. Therefore, in the present study we investigated the metabolomic profile of ZIKV-infected microglia. Microglial cells were exposed to ZIKV at different time points and were analyzed by a Liquid Chromatography-High Resolution mass spectrometry-based metabolomic approach. The results show that ZIKV infection in microglia leads to modulation of the expression of numerous metabolites, including lysophospholipids, particulary Lysophosphatidylcholine, and phospholipids such as Phosphatidylcholine, Phosphatidylserine, Ceramide and Sphingomyelin, and carboxylicic acids as Undecanedioic and Dodecanedioic acid. Some of these metabolites are involved in neuronal differentiation, regulation of apoptosis, virion architecture and viral replication. ZIKV infection was associated with concomitant secretion of inflammatory mediators linked with central nervous system inflammation such as IL-6, TNF-α, IL-1ß, iNOS and NO. It also resulted in the upregulation of the expression of the gene encoding CX3CR1, a chemokine receptor known to regulate functional synapse plasticity and signaling between microglial cells. These findings highlight an important role for microglia and their metabolites in the process of neuroinflammation that occurs during ZIKV pathogenesis.


Subject(s)
Metabolome/physiology , Microglia/metabolism , Zika Virus Infection/metabolism , Animals , Cells, Cultured , Chlorocebus aethiops , Culicidae , Fetus/cytology , Fetus/virology , Humans , Metabolomics , Microcephaly/metabolism , Microcephaly/pathology , Microglia/pathology , Vero Cells , Virus Replication/physiology , Zika Virus/physiology , Zika Virus Infection/pathology
15.
Acta Trop ; 188: 244-250, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30248317

ABSTRACT

Infections caused by arboviruses such as dengue virus (DENV), chikungunya virus (CHIKV), and Zika virus (ZIKV) frequently occur in tropical and subtropical regions. These three viruses are transmitted by Aedes (Ae.) aegypti and Ae. albopictus. In Thailand, the highest incidence of arbovirus infection and the high circulation of Aedes mosquito mainly occurs in the Southern provinces of the country. Few studies have focused on the incidence of co-infection of arboviruses in this region. In the present study, a cross-sectional study was conducted on a cohort of 182 febrile patients from three hospitals located in Southern Thailand. Surveillance of DENV, CHIKV and ZIKV was conducted from May to October 2016 during the rainy season. The serological analysis and molecular detection of arboviruses were performed by ELISA and multiplex RT-PCR respectively. The results demonstrated that 163 cases out of 182 patients (89.56%) were infected with DENV, with a predominance of DENV-2. Among these DENV positive cases, a co-infection with CHIKV for 6 patients (3.68%) and with ZIKV for 1 patient (0.61%) were found. 19 patients out of 182 were negative for arboviruses. This study provides evidence of co-infection of arboviruses in Southern Thailand and highlight the importance of testing DENV and other medically important arboviruses, such as CHIKV and ZIKV simultaneously.


Subject(s)
Chikungunya Fever/epidemiology , Dengue/epidemiology , Zika Virus Infection/epidemiology , Aedes/virology , Animals , Chikungunya Fever/virology , Chikungunya virus/genetics , Coinfection/epidemiology , Cross-Sectional Studies , Dengue Virus/genetics , Enzyme-Linked Immunosorbent Assay , Female , Humans , Incidence , Male , Multiplex Polymerase Chain Reaction , Thailand/epidemiology , Zika Virus/genetics
16.
Infect Genet Evol ; 55: 68-70, 2017 11.
Article in English | MEDLINE | ID: mdl-28866137

ABSTRACT

Chikungunya virus (CHIKV) transmission occurs through the bite of an infected Aedes mosquito which injects virus-containing saliva into the skin of the human host during blood feeding. In the present study, we have determined the effect of Aedes aegypti saliva on CHIKV replication in human skin fibroblasts, a major cell type for viral entry, which mimics the events that occur during natural transmission. A significant increase in the expression of viral transcripts and infectious viral particles was observed in fibroblasts infected with CHIKV in the presence of saliva, as compared with those infected with virus alone. CHIKV-infected human fibroblasts were found to express significantly increased levels of various type I IFN-responsive genes, as demonstrated by specific PCR array analysis. In contrast, the expression of these genes was markedly decreased in cells infected with CHIKV in the presence of mosquito saliva. Moreover, Western blotting analysis revealed that STAT2 and its phosphorylated form were down-regulated in the presence of mosquito saliva. Our data demonstrate for the first time the significance of Aedes aegypti saliva in promoting CHIKV infection via down-regulation of several type I IFN-responsive genes in infected human skin fibroblasts via the JAK-STAT signaling pathway.


Subject(s)
Aedes/virology , Chikungunya Fever/metabolism , Chikungunya Fever/virology , Chikungunya virus/physiology , Interferon Type I/metabolism , Saliva/virology , Signal Transduction , Virus Replication , Animals , Cells, Cultured , Chikungunya Fever/genetics , Chikungunya Fever/transmission , Fibroblasts/metabolism , Fibroblasts/virology , Gene Expression Regulation , Humans
17.
Rev Panam Salud Publica ; 41: e63, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28902276

ABSTRACT

Dengue and chikungunya viruses are transmitted by Aedes mosquitoes. In Martinique, an island of the French West Indies, Aedes aegypti is the suspected vector of both arboviruses; there is no Aedes albopictus on the island. During the concomitant outbreak of 2013 - 2015, the authors collected wild A. aegypti populations, and for the first time, detected dengue and chikungunya viruses in field-collected females. This paper demonstrates the mosquito's role in transmission of both dengue and chikungunya on the island, and also highlights a tool that public health authorities can use for preventing outbreaks.


Subject(s)
Aedes/virology , Chikungunya Fever/epidemiology , Chikungunya virus/isolation & purification , Dengue Virus/isolation & purification , Dengue/epidemiology , Disease Outbreaks , Animals , Female , Humans , Male , Martinique/epidemiology
18.
Sci Rep ; 7(1): 3145, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28600536

ABSTRACT

Chikungunya virus (CHIKV) is an emerging arbovirus of the Togaviridae family that poses a present worldwide threat to human in the absence of any licensed vaccine or antiviral treatment to control viral infection. Here, we show that compounds interfering with intracellular cholesterol transport have the capacity to inhibit CHIKV replication in human skin fibroblasts, a major viral entry site in the human host. Pretreatment of these cells with the class II cationic amphiphilic compound U18666A, or treatment with the FDA-approved antidepressant drug imipramine resulted in a near total inhibition of viral replication and production at the highest concentration used without any cytotoxic effects. Imipramine was found to affect both the fusion and replication steps of the viral life cycle. The key contribution of cholesterol availability to the CHIKV life cycle was validated further by the use of fibroblasts from Niemann-Pick type C (NPC) patients in which the virus was unable to replicate. Interestingly, imipramine also strongly inhibited the replication of several Flaviviridae family members, including Zika, West Nile and Dengue virus. Together, these data show that this compound is a potential drug candidate for anti-arboviral treatment.


Subject(s)
Chikungunya virus/drug effects , Cholesterol/metabolism , Imipramine/pharmacology , Skin/virology , Androstenes/pharmacology , Biological Transport/drug effects , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/virology , Humans , Niemann-Pick Disease, Type C/pathology , Skin/cytology , Skin/drug effects , Virus Internalization/drug effects , Virus Replication/drug effects
19.
Article in English | PAHO-IRIS | ID: phr-34099

ABSTRACT

Dengue and chikungunya viruses are transmitted by Aedes mosquitoes. In Martinique, an island of the French West Indies, Aedes aegypti is the suspected vector of both arboviruses; there is no Aedes albopictus on the island. During the concomitant outbreak of 2013 – 2015, the authors collected wild A. aegypti populations, and for the first time, detected dengue and chikungunya viruses in field-collected females. This paper demonstrates the mosquito’s role in transmission of both dengue and chikungunya on the island, and also highlights a tool that public health authorities can use for preventing outbreaks. Keywords Aedes; culicidae; dengue; chikungunya virus; vector control


Los virus del dengue y del chikungunya se transmiten a través de los mosquitos del género Aedes. Se da por supuesto que en Martinica, en las Antillas francesas, Aedes aegypti es el vector de ambos arbovirus, puesto que en la isla no hay Aedes albopictus. Durante el brote concomitante del 2013 al 2015, los autores recogieron muestras de poblaciones salvajes de A. aegypti y, por primera vez, detectaron virus del dengue y del chikungunya en las hembras obtenidas en el terreno. En el presente artículo se demuestra que el mosquito actúa en la isla como transmisor tanto del dengue como del chikungunya y se describe, además, una herramienta que las autoridades de salud pública pueden utilizar para prevenir los brotes.


Subject(s)
Aedes , Culicidae , Dengue , Chikungunya virus , Vector Control of Diseases , Martinique , West Indies , Caribbean Region
20.
Infect Genet Evol ; 49: 134-137, 2017 04.
Article in English | MEDLINE | ID: mdl-28095299

ABSTRACT

ZIKA virus (ZIKV) is a newly emerging arbovirus. Since its discovery 60years ago in Uganda, it has spread throughout the Pacific, Latin America and the Caribbean, emphasizing the capacity of ZIKV to spread to non-endemic regions worldwide. Although infection with ZIKV often leads to mild disease, its recent emergence in the Americas has coincided with an increase in adults developing Guillain-Barré syndrome and neurological complications in new-borns, such as congenital microcephaly. Many questions remain unanswered regarding the complications caused by different primary isolates of ZIKV. Here, we report the permissiveness of primary human astrocytes for two clinically relevant, Asian and African ZIKV strains and show that both isolates strongly induce antiviral immune responses in these cells albeit with markedly different kinetics. This study describes for the first time the specific antiviral gene expression in infected primary human astrocytes, the major glial cells within the central nervous system.


Subject(s)
Astrocytes/immunology , DEAD Box Protein 58/immunology , Host-Pathogen Interactions , NLR Proteins/immunology , Toll-Like Receptors/immunology , Astrocytes/virology , DEAD Box Protein 58/genetics , Gene Expression Regulation , Humans , Immunity, Innate , NLR Proteins/genetics , Primary Cell Culture , RNA, Viral/biosynthesis , RNA, Viral/genetics , Receptors, Immunologic , Time Factors , Toll-Like Receptors/genetics , Viral Load/immunology , Virus Replication/immunology , Zika Virus/genetics , Zika Virus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...