Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Oecologia ; 202(4): 819-830, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37640888

ABSTRACT

The decline of most caribou (Rangifer tarandus) populations underlines the need to understand the determinants of key demographic parameters. In migratory caribou, we have limited information on rates and drivers of pre-weaning mortality. We fitted 60 pregnant females of the Rivière-aux-Feuilles caribou herd with GPS camera collars to track the survival of calves from birth to weaning in 2016-2018. Over the three years, calf survival rate before weaning, i.e. to 01-Sep, approximately three months of age, was 0.63 (CI 0.50-0.77). Summer mortality risk was mainly influenced by calf birth date, with calves born earlier in the calving season having a lower mortality risk than those born later. Mortality also increased when calves experienced low or high temperature during calving. This study provides the first estimates of pre-weaning survival of migratory caribou calves in this herd, illustrating the value of new technologies to collect data otherwise difficult to obtain in widely distributed migratory populations. This approach can easily be extended to other large herbivores and predators. Our study brings new insights on how climate change may affect summer juvenile survival given the increased temperatures and faster changes in plant phenology expected in the future.


Subject(s)
Reindeer , Female , Pregnancy , Animals , Cattle , Climate Change , Herbivory , Seasons
2.
Proc Biol Sci ; 290(2002): 20230511, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37403509

ABSTRACT

The slow-fast continuum is a commonly used framework to describe variation in life-history strategies across species. Individual life histories have also been assumed to follow a similar pattern, especially in the pace-of-life syndrome literature. However, whether a slow-fast continuum commonly explains life-history variation among individuals within a population remains unclear. Here, we formally tested for the presence of a slow-fast continuum of life histories both within populations and across species using detailed long-term individual-based demographic data for 17 bird and mammal species with markedly different life histories. We estimated adult lifespan, age at first reproduction, annual breeding frequency, and annual fecundity, and identified the main axes of life-history variation using principal component analyses. Across species, we retrieved the slow-fast continuum as the main axis of life-history variation. However, within populations, the patterns of individual life-history variation did not align with a slow-fast continuum in any species. Thus, a continuum ranking individuals from slow to fast living is unlikely to shape individual differences in life histories within populations. Rather, individual life-history variation is likely idiosyncratic across species, potentially because of processes such as stochasticity, density dependence, and individual differences in resource acquisition that affect species differently and generate non-generalizable patterns across species.


Subject(s)
Life History Traits , Reproduction , Humans , Animals , Mammals , Birds
3.
Ecol Lett ; 25(7): 1640-1654, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35610546

ABSTRACT

Temporal correlations among demographic parameters can strongly influence population dynamics. Our empirical knowledge, however, is very limited regarding the direction and the magnitude of these correlations and how they vary among demographic parameters and species' life histories. Here, we use long-term demographic data from 15 bird and mammal species with contrasting pace of life to quantify correlation patterns among five key demographic parameters: juvenile and adult survival, reproductive probability, reproductive success and productivity. Correlations among demographic parameters were ubiquitous, more frequently positive than negative, but strongly differed across species. Correlations did not markedly change along the slow-fast continuum of life histories, suggesting that they were more strongly driven by ecological than evolutionary factors. As positive temporal demographic correlations decrease the mean of the long-run population growth rate, the common practice of ignoring temporal correlations in population models could lead to the underestimation of extinction risks in most species.


Subject(s)
Population Growth , Reproduction , Animals , Biological Evolution , Birds , Mammals , Population Dynamics
4.
Ecol Evol ; 11(11): 6742-6765, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34141254

ABSTRACT

Scavenging can have important consequences for food web dynamics, for example, it may support additional consumer species and affect predation on live prey. Still, few food web models include scavenging. We develop a dynamic model that includes two facultative scavenger species, which we refer to as the predator or scavenger species according to their natural scavenging propensity, as well as live prey, and a carrion pool to show ramifications of scavenging for predation in simple food webs. Our modeling suggests that the presence of scavengers can both increase and decrease predator kill rates and overall predation in model food webs and the impact varies (in magnitude and direction) with context. In particular, we explore the impact of the amount of dynamics (exploitative competition) allowed in the predator, scavenger, and prey populations as well as the direction and magnitude of interference competition between predators and scavengers. One fundamental prediction is that scavengers most likely increase predator kill rates, especially if there are exploitative feedback effects on the prey or carrion resources like is normally observed in natural systems. Scavengers only have minimal effects on predator kill rate when predator, scavenger, and prey abundances are kept constant by management. In such controlled systems, interference competition can greatly affect the interactions in contrast to more natural systems, with an increase in interference competition leading to a decrease in predator kill rate. Our study adds to studies that show that the presence of predators affects scavenger behavior, vital rates, and food web structure, by showing that scavengers impact predator kill rates through multiple mechanisms, and therefore indicating that scavenging and predation patterns are tightly intertwined. We provide a road map to the different theoretical outcomes and their support from different empirical studies on vertebrate guilds to provide guidance in wildlife management.

5.
Proc Natl Acad Sci U S A ; 117(50): 31969-31978, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33257553

ABSTRACT

Temporal variation in natural selection is predicted to strongly impact the evolution and demography of natural populations, with consequences for the rate of adaptation, evolution of plasticity, and extinction risk. Most of the theory underlying these predictions assumes a moving optimum phenotype, with predictions expressed in terms of the temporal variance and autocorrelation of this optimum. However, empirical studies seldom estimate patterns of fluctuations of an optimum phenotype, precluding further progress in connecting theory with observations. To bridge this gap, we assess the evidence for temporal variation in selection on breeding date by modeling a fitness function with a fluctuating optimum, across 39 populations of 21 wild animals, one of the largest compilations of long-term datasets with individual measurements of trait and fitness components. We find compelling evidence for fluctuations in the fitness function, causing temporal variation in the magnitude, but not the direction of selection. However, fluctuations of the optimum phenotype need not directly translate into variation in selection gradients, because their impact can be buffered by partial tracking of the optimum by the mean phenotype. Analyzing individuals that reproduce in consecutive years, we find that plastic changes track movements of the optimum phenotype across years, especially in bird species, reducing temporal variation in directional selection. This suggests that phenological plasticity has evolved to cope with fluctuations in the optimum, despite their currently modest contribution to variation in selection.


Subject(s)
Birds/physiology , Mammals/physiology , Models, Genetic , Reproduction/genetics , Selection, Genetic/physiology , Animals , Biological Evolution , Datasets as Topic , Genetic Fitness , Time Factors
6.
J Anim Ecol ; 88(8): 1118-1133, 2019 08.
Article in English | MEDLINE | ID: mdl-31183864

ABSTRACT

Fitness costs of reproduction are expected when resources are limited. Costs drive the evolution of life-history strategies and can affect population dynamics if females change their allocation of resources to reproduction. We studied fitness costs of reproduction in mountain ungulates in Alberta, Canada. We monitored two populations of bighorn sheep (Ovis canadensis) for 44 and 30 years, and one of mountain goats (Oreamnos americanus) for 30 years. Both species are highly iteroparous. Heterogeneity in individual reproductive potential makes fitness costs of reproduction difficult to detect and quantify without manipulations. In capital breeders, individual differences can be partly accounted for by considering body mass and other correlates of reproductive potential. Long-term monitoring can reveal costs that only manifest under stressful conditions such as disease or resource scarcity. Despite individual differences in reproductive potential, we detected fitness costs of reproduction in females. Costs, in terms of mass gain and survival, are almost entirely born by subsequent offspring, as mothers prioritize their own maintenance and survival. Costs are greater for primiparous females, decrease with increasing body mass and increase as resource availability declines, and sons are costlier than daughters. Costs may increase for senescent females that appear to reduce allocation to reproduction. In bighorn sheep, costs mostly involve reduced mass gain and lower survival of subsequent offspring. In mountain goats, costs include reductions in mass gain, subsequent fecundity and juvenile survival. In males, fitness costs derive mostly from attempts to reproduce rather than from siring success and likely depend upon individual competitiveness. In the absence of selective harvests, dominant males may enjoy high fitness and possibly lower costs compared to subordinates. The conservative reproductive tactic of mountain ungulate females likely explains why density dependence mostly involves later primiparity and lower recruitment, but rarely affects adult survival. Future research will seek to better account for heterogeneity in reproductive potential, assess cumulative reproductive costs and investigate the potential effects of fathers on maternal allocation tactics.


Les coûts de la reproduction émergent lorsque les ressources sont limitées et influencent l'évolution des stratégies d'histoire de vie. Si les femelles modifient l'allocation des ressources dans la reproduction pour mitiger ces coûts, ils peuvent aussi affecter la dynamique de population. Nous avons étudié les coûts de la reproduction chez des ongulés en Alberta, Canada. Nous avons suivi deux populations de mouflons d'Amérique (Ovis canadensis) pour 44 et 30 ans, et une de chèvre de montagne (Oreamnos americanus) pour 30 ans. Ces deux espèces sont itéropares. L'hétérogénéité dans le potentiel reproducteur des individus peut masquer les coûts en fitness liés à la reproduction. Ils sont donc plus souvent détectables à l'aide de manipulation expérimentale. Chez les espèces avec reproduction « sur capital ¼, il est possible de contrôler pour les différences individuelles en incluant des variables liées au potentiel reproducteur telles que la masse corporelle. Les suivis à long terme permettent de détecter des coûts qui se manifestent seulement lors de conditions environnementales défavorables. Malgré les différences en potentiel reproducteur, nous avons détecté des coûts chez les femelles. Ces coûts, tels qu'une réduction en croissance ou en survie, sont presque toujours subis par les jeunes nés lors d'épisodes de reproduction subséquents. En effet, les mères priorisent leur propre maintien et leur survie. Les coûts sont supérieurs pour les femelles primipares et dans les conditions défavorables. Ils sont plus faibles pour les femelles plus lourdes et il semble que les fils soient plus coûteux que les filles. Les coûts augmentent aussi chez les femelles sénescentes qui semblent réduire leur allocation dans la reproduction. Chez les mouflons, les coûts impliquent une réduction du gain en masse et une survie plus faible des jeunes nés lors de reproductions subséquentes. Chez les chèvres de montagne, ces coûts sont accompagnés d'une réduction de la fécondité future. Chez les mâles, les coûts sont surtout influencés par l'investissement en temps et en énergie dans le rut plutôt que par le succès d'accouplement. Ces coûts devraient donc surtout dépendre de l'habileté compétitive individuelle. En absence de chasse sélective, les mâles dominants devraient avoir un fort succès reproducteur avec des coûts potentiellement plus faibles comparativement aux subordonnées. La tactique conservative adoptée par les ongulés de montagne femelles peut expliquer pourquoi les effets densité-dépendant mènent à un retard dans l'âge à la primiparité et à un recrutement plus faible, mais affectent rarement la survie adulte. Nos recherches futures tenteront de mieux quantifier l'hétérogénéité individuelle, évalueront les coûts cumulatifs à la reproduction et investigueront l'effet potentiel des pères sur les tactiques d'allocation maternelles.


Subject(s)
Sheep, Bighorn , Alberta , Animals , Female , Fertility , Male , Pregnancy , Reproduction , Ruminants
7.
Proc Biol Sci ; 286(1896): 20181968, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30963926

ABSTRACT

In species with sexual size dimorphism, the offspring of the larger sex usually have greater energy requirements and may lead to greater fitness costs for parents. The effects of offspring sex on maternal longevity, however, have only been tested in humans. Human studies produced mixed results and considerable debate mainly owing to the difficulty of distinguishing the effects of sexual dimorphism from sociocultural factors. To advance this debate, we examined how the relative number of sons influenced maternal longevity in four species of free-living ungulates (Soay sheep Ovis aries; bighorn sheep, Ovis canadensis; red deer, Cervus elaphus; mountain goat, Oreamnos americanus), with high male-biased sexual size dimorphism but without complicating sociocultural variables. We found no evidence for a higher cumulative cost of sons than of daughters on maternal longevity. For a given number of offspring, most females with many sons in all four populations lived longer than females with few sons. The higher cost of sons over daughters on maternal lifespan reported by some human studies may be the exception rather than the rule in long-lived iteroparous species.


Subject(s)
Longevity , Reproduction , Ruminants/physiology , Sex Ratio , Animals , Deer/physiology , Mothers , Sheep, Bighorn/physiology , Sheep, Domestic/physiology
8.
Ecol Evol ; 9(5): 2920-2932, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30891226

ABSTRACT

Because growth of new hairs entails energetic costs, individual condition and access to food should determine the timing of molt. Previous studies on the timing of molt in ungulates have mostly focused on the influence of age class and reproductive status, but the effects of body condition and environmental phenology have not been evaluated. Our goal was to assess how intrinsic traits and environmental conditions determine the timing of winter coat shedding in a mountain goat population monitored for 27 years. The date of molt completion followed a U shape with age, suggesting that senescence occurs in terms of the molting process in mountain goats. Juveniles of both sexes delayed molting in a similar fashion, but molt timing differed between sexes during adulthood. Males molted progressively earlier until reaching age when reproduction peaked, after which they started delaying molting again. Females reached earliest molt dates at age of first reproduction and then progressively delayed molt date. Lactating females molted 10 days later than barren females on average, but this only occurred in females in good condition. Thus, although it has been shown that reproduction delays molt in ungulates, our results indicate that body condition can override this effect. Overall, our results revealed that access to both extrinsic and intrinsic resources is one of the key mechanisms driving molting processes in a mammalian herbivore.

9.
Ecol Lett ; 21(9): 1401-1412, 2018 09.
Article in English | MEDLINE | ID: mdl-30019409

ABSTRACT

The composition of local mammalian carnivore communities has far-reaching effects on terrestrial ecosystems worldwide. To better understand how carnivore communities are structured, we analysed camera trap data for 108 087 trap days across 12 countries spanning five continents. We estimate local probabilities of co-occurrence among 768 species pairs from the order Carnivora and evaluate how shared ecological traits correlate with probabilities of co-occurrence. Within individual study areas, species pairs co-occurred more frequently than expected at random. Co-occurrence probabilities were greatest for species pairs that shared ecological traits including similar body size, temporal activity pattern and diet. However, co-occurrence decreased as compared to other species pairs when the pair included a large-bodied carnivore. Our results suggest that a combination of shared traits and top-down regulation by large carnivores shape local carnivore communities globally.


Subject(s)
Carnivora , Ecology , Ecosystem , Animals , Sympatry
10.
Am Nat ; 189(6): 667-683, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28514626

ABSTRACT

The life-history theories of aging predict lifetime trade-offs between early reproductive allocation and late-life survival, reproduction, or both components of fitness. Recent studies in wild populations have found evidence for these early-late life trade-offs, but rarely have they been found across multiple traits while exploring the additional effects of variation in environmental conditions and individual quality. Benefiting from longitudinal data on adult female mountain goats (Oreamnos americanus), we investigated the influence of age at first reproduction (AFR) and early reproductive success (ERS) on longevity, late reproductive success, and senescence rates while accounting for the influence of natal environmental conditions and individual quality. Contrary to predictions, we did not find evidence for early-late life trade-offs. Instead, an earlier AFR and a greater ERS had positive but weak direct effects on late reproductive success. Natal population density, however, was the strongest determinant of all life-history traits, having a direct negative effect on female longevity, late reproductive success, AFR, and ERS. Although natal density reduced the probability of annual reproduction and annual survival during adulthood, higher allocation to reproduction in early life and poorer natal conditions did not lead to accelerated rates of senescence during adulthood. The results of this investigation provide an integrated picture of early-late life trade-offs, underscoring the importance of accounting for environmental conditions because of their potentially strong implications for population dynamics.


Subject(s)
Longevity , Reproduction , Ruminants , Aging , Animals , Environment , Female , Population Dynamics
11.
Biol Rev Camb Philos Soc ; 92(2): 754-775, 2017 May.
Article in English | MEDLINE | ID: mdl-26932678

ABSTRACT

Mixed models are now well-established methods in ecology and evolution because they allow accounting for and quantifying within- and between-individual variation. However, the required normal distribution of the random effects can often be violated by the presence of clusters among subjects, which leads to multi-modal distributions. In such cases, using what is known as mixture regression models might offer a more appropriate approach. These models are widely used in psychology, sociology, and medicine to describe the diversity of trajectories occurring within a population over time (e.g. psychological development, growth). In ecology and evolution, however, these models are seldom used even though understanding changes in individual trajectories is an active area of research in life-history studies. Our aim is to demonstrate the value of using mixture models to describe variation in individual life-history tactics within a population, and hence to promote the use of these models by ecologists and evolutionary ecologists. We first ran a set of simulations to determine whether and when a mixture model allows teasing apart latent clustering, and to contrast the precision and accuracy of estimates obtained from mixture models versus mixed models under a wide range of ecological contexts. We then used empirical data from long-term studies of large mammals to illustrate the potential of using mixture models for assessing within-population variation in life-history tactics. Mixture models performed well in most cases, except for variables following a Bernoulli distribution and when sample size was small. The four selection criteria we evaluated [Akaike information criterion (AIC), Bayesian information criterion (BIC), and two bootstrap methods] performed similarly well, selecting the right number of clusters in most ecological situations. We then showed that the normality of random effects implicitly assumed by evolutionary ecologists when using mixed models was often violated in life-history data. Mixed models were quite robust to this violation in the sense that fixed effects were unbiased at the population level. However, fixed effects at the cluster level and random effects were better estimated using mixture models. Our empirical analyses demonstrated that using mixture models facilitates the identification of the diversity of growth and reproductive tactics occurring within a population. Therefore, using this modelling framework allows testing for the presence of clusters and, when clusters occur, provides reliable estimates of fixed and random effects for each cluster of the population. In the presence or expectation of clusters, using mixture models offers a suitable extension of mixed models, particularly when evolutionary ecologists aim at identifying how ecological and evolutionary processes change within a population. Mixture regression models therefore provide a valuable addition to the statistical toolbox of evolutionary ecologists. As these models are complex and have their own limitations, we provide recommendations to guide future users.


Subject(s)
Ecology/methods , Models, Statistical , Animals , Bayes Theorem , Biological Evolution , Computer Simulation , Regression Analysis
12.
Oecologia ; 178(1): 175-86, 2015 May.
Article in English | MEDLINE | ID: mdl-25556294

ABSTRACT

Studies on juvenile survival have mainly focused on the effects of environmental conditions and maternal traits. However, growing evidence indicates that the ability of parents to care for their young and the offspring developmental behaviors could be key determinants of their survival. We examined the relative influence of (1) environmental conditions, (2) offspring traits, (3) maternal traits, (4) maternal care behaviors, and (5) offspring developmental behaviors on kid survival to weaning and to 1 year old in mountain goats (Oreamnos americanus). Offspring development and maternal care directly affected offspring survival, and this more importantly than did environmental conditions and maternal traits. Frequency of play strongly increased survival before weaning. Greater maternal care increased offspring survival during winter, directly and indirectly through kid mass. Kid mass was also a major determinant of both summer and winter survival. Environmental conditions mainly influenced summer survival while maternal characteristics indirectly affected winter survival through an effect on kid mass. Behavioral adaptations of maternal care and offspring development to local selective pressures can lead to local adaptations and have greater implications in population dynamic studies than previously believed.


Subject(s)
Behavior, Animal , Environment , Maternal Behavior , Phenotype , Ruminants/growth & development , Seasons , Adaptation, Physiological , Animals , Body Weight , Female , Humans , Play and Playthings , Weaning
13.
Ecol Appl ; 22(5): 1628-39, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22908718

ABSTRACT

Parental allocation strategies are of profound interest in life history because they directly impact offspring fitness and therefore are highly valuable for understanding population dynamics and informing management decisions. Yet, numerous questions about reproductive allocation patterns for wild populations of large mammals remain unanswered because of the challenges for measuring allocation in the wild. Using a nine-year longitudinal data set on life-history traits of mother-calf bison pairs, we identified sources of variation in relative maternal allocation (calf mass ratio on mother mass) and assessed the occurrence of reproductive costs associated with differential maternal allocation. We found that heavy mothers provided a lower allocation but still produced heavier calves than light mothers. Older females produced lighter calves and tended to decrease allocation as they aged, supporting the occurrence of reproductive senescence. Mothers that had produced a calf the previous year produced lighter calves and allocated less than mothers that did not lactate the previous year, revealing reproductive costs. However, greater maternal allocation did not reduce the probability of breeding in successive years, and the amount of allocation provided by a mother was positively correlated among the offspring she produced, illustrating individual heterogeneity. Although life-history studies are usually classified as either supporting costs of reproduction or individual quality, our study demonstrates that these contrasting evolutionary forces can shape variation within a single trait. Our work illustrates that many processes can coevolve within a population, emphasizing the need to integrate multiple concepts to better understand the evolution of life-history traits. With regard to management of bison herds, if the goal of culling programs is to select for animals with the best performance, this research suggests that managers should account for the condition and previous reproductive status of mothers when taking culling decisions on juvenile bison.


Subject(s)
Aging/physiology , Bison/physiology , Energy Metabolism/physiology , Reproduction/physiology , Animals , Animals, Newborn , Birth Weight , Body Weight , Female , Pregnancy
14.
Ecology ; 91(7): 2034-43, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20715626

ABSTRACT

Reproduction should reduce resources available for somatic investment and result in fundamental trade-offs among life-history traits. Using 18 years of longitudinal data from marked mountain goats (Oreamnos americanus), we assessed whether reproductive status affected female survival and future reproduction when accounting for parity, age, individual quality, population density, and environmental conditions. Reproduction reduced the probability of parturition and offspring survival in the following year. Female survival, however, was independent of previous reproduction, suggesting that females favored their own survival over that of their offspring. The lower probability of parturition in females that had a kid the previous year was only detected at high population density and among young and prime-aged females, suggesting that fitness costs of reproduction can be masked by variations in resource availability and individual characteristics. Primiparous females were less likely than multiparous females to reproduce in the subsequent year. Offspring survival was reduced at high density and after severe winters. Environmental conditions mainly influenced offspring survival, whereas female survival and fecundity were principally modulated by female characteristics. Our study highlights how different intrinsic and environmental factors can affect the probability of future reproduction and also underlines the value of long-term monitoring of known individuals.


Subject(s)
Environment , Goats/physiology , Reproduction/physiology , Aging , Animals , Energy Metabolism , Female , Longevity , Parity , Pregnancy , Pregnancy Outcome/veterinary , Seasons
15.
Ecol Lett ; 13(7): 915-35, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20482573

ABSTRACT

Fitness costs of reproduction play a key role in understanding the evolution of reproductive tactics. Nevertheless, the detection and the intensity of costs of reproduction vary according to which life-history traits and species are studied. We propose an evolutionary model demonstrating that the chance of detecting a cost of reproduction should be lower when the fitness component studied has a low rather than high variance. Consequently, the fitness component that is affected the most by costs of reproduction should vary with life speed. Since long-lived species have developed a strategy that avoids jeopardizing their survival and short-lived species favour current reproduction, variance in survival is smaller and variance in reproduction higher in long-lived vs. short-lived species. We review empirical studies of costs of reproduction in free-ranging mammals, comparing evidence of costs reported among species and focal traits. In support of our model, more studies reported evidence of reproductive costs of reproduction in ungulates than in rodents, whereas survival costs of reproduction were more frequent in rodents than in ungulates. The life-history model we propose is expected to apply to any species, and hence provides a better understanding of life-history variation, which should be relevant to all evolutionary ecologists.


Subject(s)
Reproduction , Animals , Empirical Research , Species Specificity
16.
Ecology ; 90(7): 1981-95, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19694145

ABSTRACT

Variations among individuals in phenotypic quality and fitness often confound analyses of life-history strategies assessed at the population level. We used detailed long-term data from three populations of large herbivores with generation times ranging from four to nine years to quantify heterogeneity in individual quality among females, and to assess its influence on mean annual reproductive success over the lifetime (MRS). We also determined how environmental conditions in early life shaped individual quality and tested A. Lomnicki's hypothesis that variance in individual quality should increase when environmental conditions deteriorate. Using multivariate analyses (PCA), we identified one (in sheep and deer) or two (in goats) covariations among life-history traits (longevity, success in the last breeding opportunity, adult mass, and social rank) as indexes of individual quality that positively influenced MRS of females. Individual quality was reduced by unfavorable weather, low resource availability, and high population density in the year of birth. Early-life conditions accounted for 35-55% of variation in individual quality. In roe deer, we found greater variance in individual quality for cohorts born under unfavorable conditions as opposed to favorable ones, but the opposite was found in bighorn sheep and mountain goats. Our results demonstrate that heterogeneity in female quality can originate from environmental conditions in early life and can markedly influence the fitness of females in species located at different positions along the slow-fast continuum of life-history strategies.


Subject(s)
Deer/physiology , Goats/physiology , Ruminants/physiology , Sheep, Bighorn/physiology , Animals , Ecosystem , Female , Reproduction/physiology
17.
Oecologia ; 161(2): 421-32, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19488787

ABSTRACT

The high energetic costs of lactation can lead to fundamental trade-offs in life-history traits, particularly in young females that reproduce before completing body growth. We assessed whether lactating female mountain goats (Oreamnos americanus) used behavioural tactics at fine spatio-temporal scales to increase energy intake to compensate for the costs of lactation. Lactating females increased bite rate and chewing rate compared with non-lactating females, but selected similar foraging sites in terms of plant quality and abundance. At peak lactation, forage intake of lactating females was >40% greater than that of non-lactating females. For females that had reached asymptotic body mass (i.e. > or =6 years old), summer mass gain of lactating females was similar to that of non-lactating females. At 4 and 5 years of age, however, daily mass gain of lactating females was about 20% lower than that of non-lactating females. We conclude that increased foraging may allow fully-grown lactating females to compensate for the energetic costs of lactation, but that there is a major trade-off between mass gain and lactation for younger females.


Subject(s)
Animal Nutritional Physiological Phenomena , Energy Metabolism/physiology , Feeding Behavior/physiology , Goats/physiology , Lactation/physiology , Alberta , Animals , Body Weights and Measures , Female , Linear Models , Observation
18.
J Anim Ecol ; 78(1): 143-51, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18700872

ABSTRACT

1. Although life-history theory predicts substantial costs of reproduction, individuals often show positive correlations among life-history traits, rather than trade-offs. The apparent absence of reproductive costs may result from heterogeneity in individual quality. 2. Using detailed longitudinal data from three contrasted ungulate populations (mountain goats, Oreamnos americanus; bighorn sheep, Ovis canadensis; and roe deer, Capreolus capreolus), we assessed how individual quality affects the probability of detecting a cost of current reproduction on future reproduction for females. We used a composite measure of individual quality based on variations in longevity (all species), success in the last breeding opportunity before death (goats and sheep), adult mass (all species), and social rank (goats only). 3. In all species, high-quality females consistently had a higher probability of reproduction, irrespective of previous reproductive status. In mountain goats, we detected a cost of reproduction only after accounting for differences in individual quality. Only low-quality female goats were less likely to reproduce following years of breeding than of nonbreeding. Offspring survival was lower in bighorn ewes following years of successful breeding than after years when no lamb was produced, but only for low-quality females, suggesting that a cost of reproduction only occurred for low-quality females. 4. Because costs of reproduction differ among females, studies of life-history evolution must account for heterogeneity in individual quality.


Subject(s)
Deer/physiology , Reproduction/physiology , Ruminants/physiology , Sheep, Bighorn/physiology , Animals , Body Weight , Female , Social Dominance , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...