Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Nano ; 16(2): 1954-1962, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35073479

ABSTRACT

In stacks of two-dimensional crystals, mismatch of their lattice constants and misalignment of crystallographic axes lead to formation of moiré patterns. We show that moiré superlattice effects persist in twisted bilayer graphene (tBLG) with large twists and short moiré periods. Using angle-resolved photoemission, we observe dramatic changes in valence band topology across large regions of the Brillouin zone, including the vicinity of the saddle point at M and across 3 eV from the Dirac points. In this energy range, we resolve several moiré minibands and detect signatures of secondary Dirac points in the reconstructed dispersions. For twists θ > 21.8°, the low-energy minigaps are not due to cone anticrossing as is the case at smaller twist angles but rather due to moiré scattering of electrons in one graphene layer on the potential of the other which generates intervalley coupling. Our work demonstrates the robustness of the mechanisms which enable engineering of electronic dispersions of stacks of two-dimensional crystals by tuning the interface twist angles. It also shows that large-angle tBLG hosts electronic minigaps and van Hove singularities of different origin which, given recent progress in extreme doping of graphene, could be explored experimentally.

2.
Faraday Discuss ; 227: 163-170, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33325929

ABSTRACT

III-VI post-transition metal chalcogenides (InSe and GaSe) are a new class of layered semiconductors, which feature a strong variation of size and type of their band gaps as a function of number of layers (N). Here, we investigate exfoliated layers of InSe and GaSe ranging from bulk crystals down to monolayer, encapsulated in hexagonal boron nitride, using Raman spectroscopy. We present the N-dependence of both intralayer vibrations within each atomic layer, as well as of the interlayer shear and layer breathing modes. A linear chain model can be used to describe the evolution of the peak positions as a function of N, consistent with first principles calculations.

3.
Nano Lett ; 20(9): 6582-6589, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32786938

ABSTRACT

Suspended specimens of 2D crystals and their heterostructures are required for a range of studies including transmission electron microscopy (TEM), optical transmission experiments, and nanomechanical testing. However, investigating the properties of laterally small 2D crystal specimens, including twisted bilayers and air-sensitive materials, has been held back by the difficulty of fabricating the necessary clean suspended samples. Here we present a scalable solution that allows clean free-standing specimens to be realized with 100% yield by dry-stamping atomically thin 2D stacks onto a specially developed adhesion-enhanced support grid. Using this new capability, we demonstrate atomic resolution imaging of defect structures in atomically thin CrBr3, a novel magnetic material that degrades in ambient conditions.

4.
Nat Commun ; 11(1): 125, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31913279

ABSTRACT

Control over the quantization of electrons in quantum wells is at the heart of the functioning of modern advanced electronics; high electron mobility transistors, semiconductor and Capasso terahertz lasers, and many others. However, this avenue has not been explored in the case of 2D materials. Here we apply this concept to van der Waals heterostructures using the thickness of exfoliated crystals to control the quantum well dimensions in few-layer semiconductor InSe. This approach realizes precise control over the energy of the subbands and their uniformity guarantees extremely high quality electronic transport in these systems. Using tunnelling and light emitting devices, we reveal the full subband structure by studying resonance features in the tunnelling current, photoabsorption and light emission spectra. In the future, these systems could enable development of elementary blocks for atomically thin infrared and THz light sources based on intersubband optical transitions in few-layer van der Waals materials.

6.
Nature ; 567(7746): 81-86, 2019 03.
Article in English | MEDLINE | ID: mdl-30842637

ABSTRACT

Atomically thin layers of two-dimensional materials can be assembled in vertical stacks that are held together by relatively weak van der Waals forces, enabling coupling between monolayer crystals with incommensurate lattices and arbitrary mutual rotation1,2. Consequently, an overarching periodicity emerges in the local atomic registry of the constituent crystal structures, which is known as a moiré superlattice3. In graphene/hexagonal boron nitride structures4, the presence of a moiré superlattice can lead to the observation of electronic minibands5-7, whereas in twisted graphene bilayers its effects are enhanced by interlayer resonant conditions, resulting in a superconductor-insulator transition at magic twist angles8. Here, using semiconducting heterostructures assembled from incommensurate molybdenum diselenide (MoSe2) and tungsten disulfide (WS2) monolayers, we demonstrate that excitonic bands can hybridize, resulting in a resonant enhancement of moiré superlattice effects. MoSe2 and WS2 were chosen for the near-degeneracy of their conduction-band edges, in order to promote the hybridization of intra- and interlayer excitons. Hybridization manifests through a pronounced exciton energy shift as a periodic function of the interlayer rotation angle, which occurs as hybridized excitons are formed by holes that reside in MoSe2 binding to a twist-dependent superposition of electron states in the adjacent monolayers. For heterostructures in which the monolayer pairs are nearly aligned, resonant mixing of the electron states leads to pronounced effects of the geometrical moiré pattern of the heterostructure on the dispersion and optical spectra of the hybridized excitons. Our findings underpin strategies for band-structure engineering in semiconductor devices based on van der Waals heterostructures9.

7.
ACS Nano ; 13(2): 2136-2142, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30676744

ABSTRACT

Atomically thin films of III-VI post-transition metal chalcogenides (InSe and GaSe) form an interesting class of two-dimensional semiconductors that feature a strong variation of their band gap as a function of the number of layers in the crystal and, specifically for InSe, an expected crossover from a direct gap in the bulk to a weakly indirect band gap in monolayers and bilayers. Here, we apply angle-resolved photoemission spectroscopy with submicrometer spatial resolution (µARPES) to visualize the layer-dependent valence band structure of mechanically exfoliated crystals of InSe. We show that for one-layer and two-layer InSe the valence band maxima are away from the Γ-point, forming an indirect gap, with the conduction band edge known to be at the Γ-point. In contrast, for six or more layers the band gap becomes direct, in good agreement with theoretical predictions. The high-quality monolayer and bilayer samples enable us to resolve, in the photoluminescence spectra, the band-edge exciton (A) from the exciton (B) involving holes in a pair of deeper valence bands, degenerate at Γ, with a splitting that agrees with both µARPES data and the results of DFT modeling. Due to the difference in symmetry between these two valence bands, light emitted by the A-exciton should be predominantly polarized perpendicular to the plane of the two-dimensional crystal, which we have verified for few-layer InSe crystals.

8.
Nano Lett ; 18(9): 5373-5381, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30067903

ABSTRACT

Atomically thin black phosphorus (BP) has attracted considerable interest due to its unique properties, such as an infrared band gap that depends on the number of layers and excellent electronic transport characteristics. This material is known to be sensitive to light and oxygen and degrades in air unless protected with an encapsulation barrier, limiting its exploitation in electrical devices. We present a new scalable technique for nanopatterning few layered BP by direct electron beam exposure of encapsulated crystals, achieving a spatial resolution down to 6 nm. By encapsulating the BP with single layer graphene or hexagonal boron nitride (hBN), we show that a focused electron probe can be used to produce controllable local oxidation of BP through nanometre size defects created in the encapsulation layer by the electron impact. We have tested the approach in the scanning transmission electron microscope (STEM) and using industry standard electron beam lithography (EBL). Etched regions of the BP are stabilized by a thin passivation layer and demonstrate typical insulating behavior as measured at 300 and 4.3 K. This new scalable approach to nanopatterning of thin air sensitive crystals has the potential to facilitate their wider use for a variety of sensing and electronics applications.

9.
Nano Lett ; 18(2): 1168-1174, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29323499

ABSTRACT

We demonstrate a new design of graphene liquid cell consisting of a thin lithographically patterned hexagonal boron nitride crystal encapsulated on both sides with graphene windows. The ultrathin window liquid cells produced have precisely controlled volumes and thicknesses and are robust to repeated vacuum cycling. This technology enables exciting new opportunities for liquid cell studies, providing a reliable platform for high resolution transmission electron microscope imaging and spectral mapping. The presence of water was confirmed using electron energy loss spectroscopy (EELS) via the detection of the oxygen K-edge and measuring the thickness of full and empty cells. We demonstrate the imaging capabilities of these liquid cells by tracking the dynamic motion and interactions of small metal nanoparticles with diameters of 0.5-5 nm. We further present an order of magnitude improvement in the analytical capabilities compared to previous liquid cell data with 1 nm spatial resolution elemental mapping achievable for liquid encapsulated bimetallic nanoparticles using energy dispersive X-ray spectroscopy (EDXS).

10.
Nano Lett ; 17(9): 5222-5228, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28741958

ABSTRACT

Vertically stacked van der Waals heterostructures are a lucrative platform for exploring the rich electronic and optoelectronic phenomena in two-dimensional materials. Their performance will be strongly affected by impurities and defects at the interfaces. Here we present the first systematic study of interfaces in van der Waals heterostructure using cross-sectional scanning transmission electron microscope (STEM) imaging. By measuring interlayer separations and comparing these to density functional theory (DFT) calculations we find that pristine interfaces exist between hBN and MoS2 or WS2 for stacks prepared by mechanical exfoliation in air. However, for two technologically important transition metal dichalcogenide (TMDC) systems, MoSe2 and WSe2, our measurement of interlayer separations provide the first evidence for impurity species being trapped at buried interfaces with hBN interfaces that are flat at the nanometer length scale. While decreasing the thickness of encapsulated WSe2 from bulk to monolayer we see a systematic increase in the interlayer separation. We attribute these differences to the thinnest TMDC flakes being flexible and hence able to deform mechanically around a sparse population of protruding interfacial impurities. We show that the air sensitive two-dimensional (2D) crystal NbSe2 can be fabricated into heterostructures with pristine interfaces by processing in an inert-gas environment. Finally we find that adopting glovebox transfer significantly improves the quality of interfaces for WSe2 compared to processing in air.

11.
Nano Lett ; 14(8): 4745-50, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25046251

ABSTRACT

Via a new dynamic, three-dimensional computer model, we simulate the tensile deformation of polymer-grafted nanoparticles that are cross-linked by labile bonds, which can readily rupture and reform. For a range of relatively high strains, the network does not fail, but rather restructures into a stable, ordered structure. Within this network, the reshuffling of the labile bonds enables the formation of this new morphology. The results provide guidelines for designing mechano-responsive hybrid materials that undergo controllable structural transitions through the application of applied forces.

12.
Soft Matter ; 10(9): 1374-83, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24652523

ABSTRACT

Using a multi-scale computational approach, we determine the effect of introducing a small fraction of high-strength connections between cross-linked nanoparticles. The nanoparticles' rigid cores are decorated with a corona of grafted polymers, which contain reactive functional groups at the chain ends. With the overlap of neighboring coronas, these reactive groups can form weak labile bonds, which can reform after breakage, or stronger bonds, which rupture irreversibly and thus, the nanoparticles are interconnected by dual cross-links. We show that this network can be reinforced by the addition of high-strength connections, which model polymer arms bound together by bonds with energies on the order of 100 kBT. We demonstrate that in the course of these simulations, these high-strength connections can be treated as unbreakable chains. By subjecting networks with a random distribution of the unbreakable chains to tensile deformation at a constant strain-rate, we determine the distribution of strain at break and toughness. With even a small amount of unbreakable chains, the nanoparticle networks can survive strains far greater than the networks without these connections. Furthermore, networks containing the high-strength connections tend to form long, thin threads, which enable a larger strain at break. The findings provide guidelines for creating polymer grafted nanoparticles networks that could show remarkable strength and ductility.


Subject(s)
Computer Simulation , Nanoparticles/chemistry , Polymers/chemistry , Models, Chemical , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...