Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Conserv Biol ; 36(6): e13958, 2022 12.
Article in English | MEDLINE | ID: mdl-35621094

ABSTRACT

Achieving a sustainable socioecological future now requires large-scale environmental repair across legislative borders. Yet, enabling large-scale conservation is complicated by policy-making processes that are disconnected from socioeconomic interests, multiple sources of knowledge, and differing applications of policy. We considered how a multidisciplinary approach to marine habitat restoration generated the scientific evidence base, community support, and funding needed to begin the restoration of a forgotten, functionally extinct shellfish reef ecosystem. The key actors came together as a multidisciplinary community of researchers, conservation practitioners, recreational fisher communities, and government bodies that collaborated across sectors to rediscover Australia's lost shellfish reefs and communicate the value of its restoration. Actions undertaken to build a case for large-scale marine restoration included synthesizing current knowledge on Australian shellfish reefs and their historical decline, using this history to tell a compelling story to spark public and political interest, integrating restoration into government policy, and rallying local support through community engagement. Clearly articulating the social, economic, and environmental business case for restoration led to state and national funding for reef restoration to meet diverse sustainability goals (e.g., enhanced biodiversity and fisheries productivity) and socioeconomic goals (e.g., job creation and recreational opportunities). A key lesson learned was the importance of aligning project goals with public and industry interests so that projects could address multiple political obligations. This process culminated in Australia's largest marine restoration initiative and shows that solutions for large-scale ecosystem repair can rapidly occur when socially valued science acts on political opportunities.


Transformación de un Ecosistema Arrecifal Perdido en un Programa Nacional de Restauración Resumen Actualmente se requiere una reparación ambiental a gran escala que atraviese fronteras legislativas para lograr un futuro socio-ecológico sustentable. Aun así, habilitar la conservación a gran escala es complicado debido a los procesos de elaboración de políticas que están desconectadas de los intereses socio-económicos, las múltiples fuentes de conocimiento y las diferentes aplicaciones de las políticas. Consideramos cómo una estrategia multidisciplinaria para la restauración de hábitats marinos generó una base de evidencia científica, apoyo comunitario y el financiamiento necesario para así iniciar la restauración de un ecosistema arrecifal de conchas funcionalmente extinto. Los actores clave formaron una comunidad multidisciplinaria de investigadores, practicantes de la conservación, comunidades de pescadores recreativos y órganos gubernamentales que colaboró con varios sectores para redescubrir los arrecifes perdidos de Australia y comunicó el valor de su restauración. Las acciones realizadas para armar el caso para la restauración marina a gran escala incluyeron la síntesis del conocimiento actual sobre los arrecifes de conchas en Australia y su declinación histórica, el uso de esta historia para contar una narración convincente que active el interés público y político, la integración de la restauración a la política gubernamental y la movilización del apoyo local por medio de la participación comunitaria. Claramente, la articulación del caso del negocio social, económico y ambiental para la restauración llevó al financiamiento estatal y nacional para la restauración arrecifal a cumplir diversos objetivos socio-económicos (p. ej.: creación de empleos, oportunidades recreativas) y de restauración (p. ej.: una productividad realzada de la biodiversidad y las pesquerías). Una lección clave que aprendimos fue lo importante que es alinear los objetivos del proyecto con los intereses públicos y de la industria, de tal manera que los proyectos aborden las múltiples obligaciones políticas. Este proceso culminó con la iniciativa de restauración marina más grande en Australia y demuestra que las soluciones para la reparación de los ecosistemas a gran escala pueden ocurrir rápidamente cuando la ciencia con valor social actúa sobre las oportunidades políticas.


Subject(s)
Conservation of Natural Resources , Ecosystem , Australia , Fisheries , Biodiversity , Coral Reefs
2.
Sci Total Environ ; 761: 143313, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33218812

ABSTRACT

A bespoke groundwater monitoring programme was designed to generate a database of pinoxaden and metabolite concentrations in shallow groundwater at agricultural locations across Europe. The data generated from this programme represent a higher tier refinement of modelled exposure estimates and provide realistic information on groundwater quality at vulnerable locations which will aid plant protection product (PPP) assessment in Europe in relation to Regulation (EC) No. 1107/2009. The Regulatory GeoPEARL_3.3.3 model developed by RIVM was used to estimate the vulnerability of cereal growing regions to leaching of two pinoxaden metabolites across the entire EU at a 1 km2 level using 20 years of daily weather data (MARS, EU JRC). Seventy sites located within the upper 50th percentile of leaching vulnerability from this modelling exercise, crop density and shallow groundwater were selected for monitoring groundwater. Retrospective and prospective pinoxaden product applications at candidate sites were recorded and these data used to place sites in the distribution for Europe. The 70 sites all fulfil the site assessment criteria and have no confining layers which may prevent or delay leaching. All sites equipped with groundwater wells had a minimum of two pinoxaden applications in the preceding four years to cereal crops. A total of 1326 samples were analysed from up to 90 down hydraulic gradient wells at 70 locations between June 2015 and July 2018. Results indicate that pinoxaden and pinoxaden metabolites are very unlikely to reach shallow groundwater at concentrations greater than 0.1 µg/L for relevant metabolites, or 10 µg/L for non-relevant metabolites, respectively (Sanco/221/2000-rev.10). Over 38 months of groundwater monitoring the annual average and 90th percentile for pinoxaden or its metabolites never exceeded 0.1 µg/L and it is proposed that these data infer that exposure to these metabolites is minimal.

3.
PLoS One ; 13(2): e0190914, 2018.
Article in English | MEDLINE | ID: mdl-29444143

ABSTRACT

We review the status of marine shellfish ecosystems formed primarily by bivalves in Australia, including: identifying ecosystem-forming species, assessing their historical and current extent, causes for decline and past and present management. Fourteen species of bivalves were identified as developing complex, three-dimensional reef or bed ecosystems in intertidal and subtidal areas across tropical, subtropical and temperate Australia. A dramatic decline in the extent and condition of Australia's two most common shellfish ecosystems, developed by Saccostrea glomerata and Ostrea angasi oysters, occurred during the mid-1800s to early 1900s in concurrence with extensive harvesting for food and lime production, ecosystem modification, disease outbreaks and a decline in water quality. Out of 118 historical locations containing O. angasi-developed ecosystems, only one location still contains the ecosystem whilst only six locations are known to still contain S. glomerata-developed ecosystems out of 60 historical locations. Ecosystems developed by the introduced oyster Crasostrea gigas are likely to be increasing in extent, whilst data on the remaining 11 ecosystem-forming species are limited, preventing a detailed assessment of their current ecosystem-forming status. Our analysis identifies that current knowledge on extent, physical characteristics, biodiversity and ecosystem services of Australian shellfish ecosystems is extremely limited. Despite the limited information on shellfish ecosystems, a number of restoration projects have recently been initiated across Australia and we propose a number of existing government policies and conservation mechanisms, if enacted, would readily serve to support the future conservation and recovery of Australia's shellfish ecosystems.


Subject(s)
Ecosystem , Shellfish , Animals , Australia , Biodiversity , Ostrea , Water Quality
4.
Oecologia ; 175(4): 1201-10, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24871134

ABSTRACT

In fishes, the growth-mortality hypothesis has received broad acceptance as a driver of recruitment variability. Recruitment is likely to be lower in years when the risk of starvation and predation in the larval stage is greater, leading to higher mortality. Juvenile snapper, Pagrus auratus (Sparidae), experience high recruitment variation in Port Phillip Bay, Australia. Using a 5-year (2005, 2007, 2008, 2010, 2011) data set of larval and juvenile snapper abundances and their daily growth histories, based on otolith microstructure, we found selective mortality acted on larval size at 5 days post-hatch in 4 low and average recruitment years. The highest recruitment year (2005) was characterised by no size-selective mortality. Larval growth of the initial larval population was related to recruitment, but larval growth of the juveniles was not. Selective mortality may have obscured the relationship between larval traits of the juveniles and recruitment as fast-growing and large larvae preferentially survived in lower recruitment years and fast growth was ubiquitous in high recruitment years. An index of daily mortality within and among 3 years (2007, 2008, 2010), where zooplankton were concurrently sampled with ichthyoplankton, was related to per capita availability of preferred larval prey, providing support for the match-mismatch hypothesis. In 2010, periods of low daily mortality resulted in no selective mortality. Thus both intra- and inter-annual variability in the magnitude and occurrence of selective mortality in species with complex life cycles can obscure relationships between larval traits and population replenishment, leading to underestimation of their importance in recruitment studies.


Subject(s)
Body Size , Fishes/physiology , Mortality , Animals , Australia , Fishes/growth & development , Larva/growth & development , Life Cycle Stages , Otolithic Membrane , Zooplankton
5.
J Phys Chem A ; 111(35): 8629-34, 2007 Sep 06.
Article in English | MEDLINE | ID: mdl-17696502

ABSTRACT

Production of O((3)P(J), J = 2, 1, 0) atoms from the 295-320 nm photodissociation of NO(3)- adsorbed on water polycrystalline ice films at 100 K was directly confirmed using the resonance-enhanced multiphoton ionization technique. Detection of the O atom signals required an induction period after deposition of HNO3 onto the ice film held at 130 K due to the slow ionization rate of HNO(3) to H+ and NO(3)- with a rate constant of k = (5.3 +/- 0.2) x 10(-3)s(-1). Translational energy distributions of the O atoms were represented by a combination of two Maxwell-Boltzmann energy distributions with translational temperatures of 2000 and 100 K. Direct detection of NO from the secondary photodissociation process was also successful. On the atmospheric implications, the influence of the direct release of the oxygen atoms into the air from NO(3)- adsorbed on the natural snowpack was included in an atmospheric model calculation on the mixing ratios of ozone and nitric oxide at the South Pole, and the results compared favorably with the field data.


Subject(s)
Nitrates/chemistry , Nitric Oxide/chemistry , Oxygen/chemistry , Water/chemistry , Adsorption , Atmosphere , Cold Temperature , Ice , Kinetics , Photochemistry , Spectrum Analysis , Ultraviolet Rays
6.
Phys Chem Chem Phys ; 9(31): 4338-48, 2007 Aug 21.
Article in English | MEDLINE | ID: mdl-17687481

ABSTRACT

The overall rate coefficient for the reaction of C(2)H(5)O(2) with HO(2) was determined using a turbulent flow chemical ionization mass spectrometer (TF-CIMS) system over the pressure range of 75 to 200 Torr and temperatures between 195 and 298 K. The temperature dependence of the overall rate coefficient for the reaction between C(2)H(5)O(2) and HO(2) was fitted using the following Arrhenius expression: k(T) = (2.08) x 10(-13) exp [(864 +/- 79)/T] cm(-3) molecule(-1) s(-1). The upper limits for the branching ratios for reactive channels leading to O(3) and OH production were quantified for the first time. A tropospheric model has been used to assess the impact of the experimental error of the rate coefficients determined in this study on predicted concentrations of a number of key species, including O(3), OH, HO(2), NO and NO(2). In all cases it is found that the propagated error is very small and will not in itself be a major cause of uncertainty in modelled concentrations. However, at low temperatures, where there is a wide discrepancy between existing kinetic studies, modelling using the range of kinetic data in the literature shows a small but significant variation for [C(2)H(5)O(2)], [C(2)H(5)OOH], [NO(x)] and the HO(2) : OH ratio. Furthermore, a structure-activity relationship (SAR) was developed to rationalise the reactivity of the reaction between RO(2) and HO(2).


Subject(s)
Glycine/chemistry , Mass Spectrometry/methods , Peroxides/chemistry , Equipment Design , Hydrocarbons/chemistry , Hydroxyl Radical , Kinetics , Models, Chemical , Models, Theoretical , Oxygen/chemistry , Ozone/chemistry , Pressure , Structure-Activity Relationship , Temperature , Time Factors
7.
Oecologia ; 131(4): 598-605, 2002 May.
Article in English | MEDLINE | ID: mdl-28547555

ABSTRACT

The influence of habitat structure on abundance and taxonomic richness of epibenthic harpacticoid copepods in seagrass beds of Port Phillip Bay, Australia was investigated using artificial seagrass plants. The density and length of artificial seagrass plants was manipulated at three sites over two sampling times. Results for artificial plants were also compared with controls without plants. The presence of habitat structure in the form of artificial seagrass resulted in a significant increase in harpacticoid abundance at all sites and taxonomic richness at one site. In terms of artificial seagrass treatments, higher blade density resulted in higher harpacticoid abundance, but blade length and surface area had no significant effect. Taxonomic richness did not vary amongst artificial seagrass treatments. At the site where taxonomic richness was increased in the presence of artificial seagrass, rarefaction showed that the result was consistent with a passive increase related to increased sample size. In contrast, although abundances in artificial seagrass were significantly higher than in controls at the other two sites, the taxonomic richness was similar to controls, suggesting that the full range of taxa available was represented in control samples. This study shows that structural aspects of complexity can have importance beyond the simple provision of complexity in the form of increased surface area of habitat, and may depend on the scale examined. Further, the study emphasises the importance of spatial and temporal replication of experiments to give generality to results.

SELECTION OF CITATIONS
SEARCH DETAIL
...