Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Chem ; 19(2): 119-131, 2023.
Article in English | MEDLINE | ID: mdl-35676848

ABSTRACT

Cancer is an uncontrolled, abnormal growth of cells and the second cause of death after cardiovascular disease. At present, chemotherapy and related drugs have three major categories. All three have characteristic action and toxicity levels of antitumor activity. Due to indications of unwanted side effects, the exploration of novel and selective anticancer agents is crucially required. Heterocyclic compounds have always played a major role in research for new drug discovery and development. 1,3,4-oxadiazole derivatives are heterocyclic isomers having pharmacological properties and play an important role as antiproliferative agents. The present review summarizes anticancer activities of 1,3,4-oxadiazole derivatives against different cell lines, such as HCT-116, MCF-7, HeLa, SMMC-7721, and A549. The results showed that 1,3,4-oxadiazole and its derivatives have the potential to play a major role as an anticancer agent with fewer side effects.


Subject(s)
Antineoplastic Agents , Cardiovascular Diseases , Humans , Antineoplastic Agents/pharmacology , Oxadiazoles/pharmacology , HeLa Cells
2.
Med Chem ; 18(7): 791-809, 2022.
Article in English | MEDLINE | ID: mdl-34931968

ABSTRACT

BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) are the commonly used therapeutic interventions of inflammation and pain that competitively inhibit the cyclooxygenase (COX) enzymes. Several side effects like gastrointestinal and renal toxicities are associated with the use of these drugs. The therapeutic anti-inflammatory benefits of NSAIDs are produced by the inhibition of COX-2 enzymes, while undesirable side effects arise from the inhibition of COX-1 enzymes. OBJECTIVE: In the present study, a new series of 2-substituted benzoxazole derivatives 2(a-f) and 3(ae) were synthesized in our lab as potent anti-inflammatory agents with outstanding gastro-protective potential. The new analogs 2(a-f) and 3(a-e) were designed depending upon the literature review to serve as ligands for the development of selective COX-2 inhibitors. METHODS: The synthesized analogs were characterized using different spectroscopic techniques (FTIR, 1HNMR, 13CNMR) and elemental analysis. All synthesized compounds were screened for their binding potential in the protein pocket of COX-2 and evaluated for their anti-inflammatory potential in animals using the carrageenan-induced paw edema method. Further 5 compounds were selected to assess the in vivo anti-ulcerogenic activity in an ethanol-induced anti-ulcer rat model. RESULTS: Five compounds (2a, 2b, 3a, 3b and 3c) exhibited potent anti-inflammatory activity and significant binding potential in the COX-2 protein pocket. Similarly, these five compounds demonstrated a significant gastro-protective effect (**p<0.01) in comparison to the standard drug, Omeprazole. CONCLUSION: Depending upon our results, we hypothesize that 2-substituted benzoxazole derivatives have excellent potential to serve as candidates for the development of selective anti-inflammatory agents (COX-2 inhibitors). However, further assessments are required to delineate their underlying mechanisms.


Subject(s)
Benzoxazoles , Cyclooxygenase 2 Inhibitors , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Benzoxazoles/chemistry , Benzoxazoles/pharmacology , Benzoxazoles/therapeutic use , Carrageenan/adverse effects , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Edema/chemically induced , Edema/drug therapy , Molecular Docking Simulation , Rats , Structure-Activity Relationship , Ulcer
3.
Asian Pac J Cancer Prev ; 13(8): 4177-81, 2012.
Article in English | MEDLINE | ID: mdl-23098428

ABSTRACT

Cancer is a multi-factorial disease and variation in genetic susceptibility, due to inherited differences in the capacity to repair mismatches in the genome, is an important factor in the development of gastric cancer (GC), for example. Epigenetic changes, including aberrant methylation of 5/CpG islands in the promoter regions of mismatch repair (MMR) genes like hMLH1, have been implicated in the development of various types of GC. In the present study we evaluated the role of hMLH1 promoter hypermethylation in Kashmiri GC patients and controls, and assessed correlations with various dietary and lifestyle factors. The study included 70 GC patients (56 males and 14 females; age (mean ± S.D) 50 ± 11.4 years). Distinction between methylated and unmethylated was achieved with MS-PCR and DNA band patterns. The Chi-square test was applied to assess the risk due to promoter hypermethylation. We found a strikingly high frequency of promoter hypermethylation in GC cases than in normal samples (72.9% (51/70) in GC cases vs 20% (14/70) in normal samples (p=0.0001). We also observed a statistically significant association between methylated hMLH1 gene promoter and smoking, consumption of sundried vegetables and hot salted tea with the risk of GC. This study revealed that hMLH1 hypermethylation is strongly associated with GC and suggested roles for epigenetic changes in stomach cancer causation in the Kashmir valley.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adenocarcinoma, Mucinous/genetics , Carcinoma, Signet Ring Cell/genetics , DNA Methylation , Intestinal Neoplasms/genetics , Nuclear Proteins/genetics , Promoter Regions, Genetic/genetics , Stomach Neoplasms/genetics , Adenocarcinoma, Mucinous/pathology , Carcinoma, Signet Ring Cell/pathology , Case-Control Studies , CpG Islands , DNA Repair/genetics , Female , Humans , India , Intestinal Neoplasms/pathology , Male , Middle Aged , MutL Protein Homolog 1 , Prognosis , Stomach Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...