Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 7(22)2022 11 22.
Article in English | MEDLINE | ID: mdl-36509289

ABSTRACT

A hallmark of HIV-1 infection is chronic inflammation, even in patients treated with antiretroviral therapy (ART). Chronic inflammation drives HIV-1 pathogenesis, leading to loss of CD4+ T cells and exhaustion of antiviral immunity. Therefore, strategies to safely reduce systematic inflammation are needed to halt disease progression and restore defective immune responses. Autophagy is a cellular mechanism for disposal of damaged organelles and elimination of intracellular pathogens. Autophagy is pivotal for energy homeostasis and plays critical roles in regulating immunity. However, how it regulates inflammation and antiviral T cell responses during HIV infection is unclear. Here, we demonstrate that autophagy is directly linked to IFN-I signaling, which is a key driver of immune activation and T cell exhaustion during chronic HIV infection. Impairment of autophagy leads to spontaneous IFN-I signaling, and autophagy induction reduces IFN-I signaling in monocytic cells. Importantly, in HIV-1-infected humanized mice, autophagy inducer rapamycin treatment significantly reduced persistent IFN-I-mediated inflammation and improved antiviral T cell responses. Cotreatment of rapamycin with ART led to significantly reduced viral rebound after ART withdrawal. Taken together, our data suggest that therapeutically targeting autophagy is a promising approach to treat persistent inflammation and improve immune control of HIV replication.


Subject(s)
HIV Infections , HIV-1 , Interferon Type I , Mice , Animals , Sirolimus/pharmacology , Sirolimus/therapeutic use , Autophagy
2.
PLoS Pathog ; 18(1): e1010160, 2022 01.
Article in English | MEDLINE | ID: mdl-34995311

ABSTRACT

Novel therapeutic strategies are needed to attenuate increased systemic and gut inflammation that contribute to morbidity and mortality in chronic HIV infection despite potent antiretroviral therapy (ART). The goal of this study is to use preclinical models of chronic treated HIV to determine whether the antioxidant and anti-inflammatory apoA-I mimetic peptides 6F and 4F attenuate systemic and gut inflammation in chronic HIV. We used two humanized murine models of HIV infection and gut explants from 10 uninfected and 10 HIV infected persons on potent ART, to determine the in vivo and ex vivo impact of apoA-I mimetics on systemic and intestinal inflammation in HIV. When compared to HIV infected humanized mice treated with ART alone, mice on oral apoA-I mimetic peptide 6F with ART had consistently reduced plasma and gut tissue cytokines (TNF-α, IL-6) and chemokines (CX3CL1) that are products of ADAM17 sheddase activity. Oral 6F attenuated gut protein levels of ADAM17 that were increased in HIV-1 infected mice on potent ART compared to uninfected mice. Adding oxidized lipoproteins and endotoxin (LPS) ex vivo to gut explants from HIV infected persons increased levels of ADAM17 in myeloid and intestinal cells, which increased TNF-α and CX3CL1. Both 4F and 6F attenuated these changes. Our preclinical data suggest that apoA-I mimetic peptides provide a novel therapeutic strategy that can target increased protein levels of ADAM17 and its sheddase activity that contribute to intestinal and systemic inflammation in treated HIV. The large repertoire of inflammatory mediators involved in ADAM17 sheddase activity places it as a pivotal orchestrator of several inflammatory pathways associated with morbidity in chronic treated HIV that make it an attractive therapeutic target.


Subject(s)
Apolipoprotein A-I , HIV Infections/pathology , Inflammation/pathology , Intestines/drug effects , Peptides/pharmacology , ADAM17 Protein/drug effects , Animals , Anti-HIV Agents/pharmacology , Humans , Mice
3.
PLoS Pathog ; 17(8): e1009895, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34460861

ABSTRACT

[This corrects the article DOI: 10.1371/journal.ppat.1009404.].

4.
PLoS Pathog ; 17(4): e1009404, 2021 04.
Article in English | MEDLINE | ID: mdl-33793675

ABSTRACT

Due to the durability and persistence of reservoirs of HIV-1-infected cells, combination antiretroviral therapy (ART) is insufficient in eradicating infection. Achieving HIV-1 cure or sustained remission without ART treatment will require the enhanced and persistent effective antiviral immune responses. Chimeric Antigen Receptor (CAR) T-cells have emerged as a powerful immunotherapy and show promise in treating HIV-1 infection. Persistence, trafficking, and maintenance of function remain to be a challenge in many of these approaches, which are based on peripheral T cell modification. To overcome many of these issues, we have previously demonstrated successful long-term engraftment and production of anti-HIV CAR T cells in modified hematopoietic stem cells (HSCs) in vivo. Here we report the development and in vivo testing of second generation CD4-based CARs (CD4CAR) against HIV-1 infection using a HSCs-based approach. We found that a modified, truncated CD4-based CAR (D1D2CAR) allows better CAR-T cell differentiation from gene modified HSCs, and maintains similar CTL activity as compared to the full length CD4-based CAR. In addition, D1D2CAR does not mediate HIV infection or stimulation mediated by IL-16, suggesting lower risk of off-target effects. Interestingly, stimulatory domains of 4-1BB but not CD28 allowed successful hematopoietic differentiation and improved anti-viral function of CAR T cells from CAR modified HSCs. Addition of 4-1BB to CD4 based CARs led to faster suppression of viremia during early untreated HIV-1 infection. D1D2CAR 4-1BB mice had faster viral suppression in combination with ART and better persistence of CAR T cells during ART. In summary, our data indicate that the D1D2CAR-41BB is a superior CAR, showing better HSC differentiation, viral suppression and persistence, and less deleterious functions compared to the original CD4CAR, and should continue to be pursued as a candidate for clinical study.


Subject(s)
HIV Infections/virology , Hematopoietic Stem Cells/cytology , Lymphocyte Activation , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , Animals , HIV Infections/immunology , HIV-1/immunology , Hematopoietic Stem Cells/immunology , Humans , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/therapeutic use
5.
AIDS ; 35(4): 543-553, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33306550

ABSTRACT

OBJECTIVES: Despite antiretroviral therapy (ART), there is an unmet need for therapies to mitigate immune activation in HIV infection. The goal of this study is to determine whether the apoA-I mimetics 6F and 4F attenuate macrophage activation in chronic HIV. DESIGN: Preclinical assessment of the in-vivo impact of Tg6F and the ex-vivo impact of apoA-I mimetics on biomarkers of immune activation and gut barrier dysfunction in treated HIV. METHODS: We used two humanized murine models of HIV infection to determine the impact of oral Tg6F with ART (HIV+ART+Tg6F+) on innate immune activation (plasma human sCD14, sCD163) and gut barrier dysfunction [murine I-FABP, endotoxin (LPS), LPS-binding protein (LBP), murine sCD14]. We also used gut explants from 10 uninfected and 10 HIV-infected men on potent ART and no morbidity, to determine the impact of ex-vivo treatment with 4F for 72 h on secretion of sCD14, sCD163, and I-FABP from gut explants. RESULTS: When compared with mice treated with ART alone (HIV+ART+), HIV+ART+Tg6F+ mice attenuated macrophage activation (h-sCD14, h-sCD163), gut barrier dysfunction (m-IFABP, LPS, LBP, and m-sCD14), plasma and gut tissue oxidized lipoproteins. The results were consistent with independent mouse models and ART regimens. Both 4F and 6F attenuated shedding of I-FABP and sCD14 from gut explants from HIV-infected and uninfected participants. CONCLUSION: Given that gut barrier dysfunction and macrophage activation are contributors to comorbidities like cardiovascular disease in HIV, apoA-I mimetics should be tested as therapy for morbidity in chronic treated HIV.


Subject(s)
HIV Infections , Animals , Apolipoprotein A-I , Biomarkers , HIV Infections/drug therapy , Lipopolysaccharide Receptors , Macrophage Activation , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...