Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(38): 8584-8589, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37726203

ABSTRACT

The manifestation of intramolecular strains in covalent systems is widely known to accelerate chemical reactions and open alternative reaction paths. This process is moderately well understood for isolated molecules and unimolecular processes. However, in condensed matter processes such as phase transformations, material properties and structure may influence typical mechanochemical effects. Therefore, we utilize steered molecular dynamics to induce out of plane strains in graphite and compress the system under a constant strain rate to induce phase transformation. We show that the out of plane strain allows phase transformations to initiate at small amounts of compressive strain. However, in contrast to typical mechanochemical results, the sum of compressive and out of plane work needed to form a diamond has a local minimum due to altered defect formation processes during phase transformation. Additionally, these altered processes slow the kinetics of the phase transformation, taking longer from initiation to total material transformation.

2.
J Chem Phys ; 158(14): 144117, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37061473

ABSTRACT

Reactive force fields for molecular dynamics have enabled a wide range of studies in numerous material classes. These force fields are computationally inexpensive compared with electronic structure calculations and allow for simulations of millions of atoms. However, the accuracy of traditional force fields is limited by their functional forms, preventing continual refinement and improvement. Therefore, we develop a neural network-based reactive interatomic potential for the prediction of the mechanical, thermal, and chemical responses of energetic materials at extreme conditions. The training set is expanded in an automatic iterative approach and consists of various CHNO materials and their reactions under ambient and shock-loading conditions. This new potential shows improved accuracy over the current state-of-the-art force fields for a wide range of properties such as detonation performance, decomposition product formation, and vibrational spectra under ambient and shock-loading conditions.

3.
J Phys Chem Lett ; 13(29): 6657-6663, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35838665

ABSTRACT

Regions of energy localization referred to as hotspots are known to govern shock initiation and the run-to-detonation in energetic materials. Mounting computational evidence points to accelerated chemistry in hotspots from large intramolecular strains induced via the interactions between the shock wave and microstructure. However, definite evidence mapping intramolecular strain to accelerated or altered chemical reactions has so far been elusive. From a large-scale reactive molecular dynamics simulation of the energetic material 1,3,5-triamino-2,4,6-trinitrobenzene, we map decomposition kinetics to molecular temperature and intramolecular strain energy prior to reaction. Both temperature and intramolecular strain are shown to accelerate chemical kinetics. A detailed analysis of the atomistic trajectory shows that intramolecular strain can induce a mechanochemical alteration of decomposition mechanisms. The results in this paper could inform continuum-level chemistry models to account for a wide range of mechanochemical effects.

4.
J Phys Chem Lett ; 12(11): 2756-2762, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33705143

ABSTRACT

Shockwave interactions with a material's microstructure localizes energy into hotspots, which act as nucleation sites for complex processes such as phase transformations and chemical reactions. To date, hotspots have been described via their temperature fields. Nonreactive, all-atom molecular dynamics simulations of shock-induced pore collapse in a molecular crystal show that more energy is localized as potential energy (PE) than can be inferred from the temperature field and that PE localization persists beyond thermal diffusion. The origin of the PE hotspot is traced to large intramolecular strains, storing energy in modes readily available for chemical decomposition.

5.
J Phys Chem A ; 125(8): 1766-1777, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33617263

ABSTRACT

2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105) is a relatively new and promising insensitive high-explosive (IHE) material that remains only partially characterized. IHEs are of interest for a range of applications and from a fundamental science standpoint, as the root causes behind insensitivity are poorly understood. We adopt a multitheory approach based on reactive molecular dynamic simulations performed with density functional theory, density functional tight-binding, and reactive force fields to characterize the reaction pathways, product speciation, reaction kinetics, and detonation performance of LLM-105. We compare and contrast these predictions to 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), a prototypical IHE, and 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane (HMX), a more sensitive and higher performance material. The combination of different predictive models allows access to processes operative on progressively longer timescales while providing benchmarks for assessing uncertainties in the predictions. We find that the early reaction pathways of LLM-105 decomposition are extremely similar to TATB; they involve intra- and intermolecular hydrogen transfer. Additionally, the detonation performance of LLM-105 falls between that of TATB and HMX. We find agreement between predictive models for first-step reaction pathways but significant differences in final product formations. Predictions of detonation performance result in a wide range of values, and one-step kinetic parameters show the similar reaction rates at high temperatures for three out of four models considered.

6.
J Phys Chem A ; 124(44): 9141-9155, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33112131

ABSTRACT

The response of high-energy-density materials to thermal or mechanical insults involves coupled thermal, mechanical, and chemical processes with disparate temporal and spatial scales that no single model can capture. Therefore, we developed a multiscale model for 1,3,5-trinitro-1,3,5-triazinane, RDX, where a continuum description is informed by reactive and nonreactive molecular dynamics (MD) simulations to describe chemical reactions and thermal transport. Reactive MD simulations under homogeneous isothermal and adiabatic conditions are used to develop a reduced-order chemical kinetics model. Coarse graining is done using unsupervised learning via non-negative matrix factorization. Importantly, the components resulting from the analysis can be interpreted as reactants, intermediates, and products, which allows us to write kinetics equations for their evolution. The kinetics parameters are obtained from isothermal MD simulations over a wide temperature range, 1200-3000 K, and the heat evolved is calibrated from adiabatic simulations. We validate the continuum model against MD simulations by comparing the evolution of a cylindrical hotspot 10 nm in diameter. We find excellent agreement in the time evolution of the hotspot temperature fields both in cases where quenching is observed and at higher temperatures for which the hotspot transitions into a deflagration wave. The validated continuum model is then used to assess the criticality of hotspots involving scales beyond the reach of atomistic simulations that are relevant to detonation initiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...