Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 15(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38140276

ABSTRACT

Enhancing the effectiveness of exercise for long-term body weight management and overall health benefits may be aided through complementary dietary strategies that help to control acute postexercise energy compensation. Inulin-type fructans (ITFs) have been shown to induce satiety through the modified secretion of appetite-regulating hormones. This study investigated the acute impact of oligofructose-enriched inulin (OI) consumption after exercise on objective and subjective measures of satiety and compensatory energy intake (EI). In a randomized crossover study, following the completion of a 45 min (65-70% VO2peak) evening exercise session, participants (BMI: 26.9 ± 3.5 kg/m2, Age: 26.8 ± 6.7 yrs) received one of two beverages: (1) sweetened milk (SM) or (2) sweetened milk + 20 g OI (SM+OI). Perceived measures of hunger were reduced in SM+OI relative to SM (p = 0.009). Within SM+OI, but not SM, plasma concentrations of GLP-1 and PYY were increased and acyl-ghrelin reduced from pre-exercise to postexercise. EI during the ad libitum breakfast in the morning postexercise tended to be lower in SM+OI (p = 0.087, d = 0.31). Gastrointestinal impacts of OI were apparent with increased ratings of flatulence (p = 0.026, d = 0.57) in participants the morning after the exercise session. Overall, the ingestion of a single dose of OI after an exercise session appears to induce subtle reductions in appetite, although the impact of these changes on acute and prolonged EI remains unclear.


Subject(s)
Appetite , Inulin , Humans , Young Adult , Adult , Appetite/physiology , Inulin/pharmacology , Cross-Over Studies , Oligosaccharides/pharmacology , Ghrelin , Energy Intake/physiology , Peptide YY
2.
Appl Physiol Nutr Metab ; 45(9): 1022-1030, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32272024

ABSTRACT

Research demonstrates that exercise acutely reduces appetite by stimulating the secretion of gut-derived satiety hormones. Currently there is a paucity of research examining the impact of postexercise nutrient intake on appetite regulation. The objective of this study was to examine how postexercise fasting versus feeding impacts the postexercise appetite response. In a randomized crossover intervention, 14 participants (body mass index: 26.9 ± 3.5 kg·m-2; age: 26.8 ± 6.7 years) received 1 of 2 recovery beverages: (i) water control (FAST) or (ii) sweetened-milk (FED) after completing a 45-min (65%-70% peak oxygen uptake) evening exercise session (∼1900 h). Energy intake was assessed through a fasted ad libitum breakfast meal and 3-day food diaries. Perceived appetite was assessed using visual analogue scales. Appetite-regulating hormones glucagon-like peptide-1 (GLP-1), peptide tyrosine-tyrosine (PYY), and acyl-ghrelin were assessed pre-exercise, 1 h after exercise, and the morning following exercise. FAST increased subjective hunger compared with FED (P < 0.05). PYY and GLP-1 after exercise were decreased and acyl-ghrelin was increased in FAST, with these differences disappearing the day after exercise (P < 0.05). Ad libitum energy intake at breakfast the following morning did not differ between trials. Overall, in the absence of postexercise macronutrient consumption, there was a pronounced increase in objective and subjective appetite after exercise. The orexigenic effects of postexercise fasting, however, were not observed the morning following exercise. Novelty Postexercise fasting leads to reduced GLP-1 and PYY and increased hunger. Reduced GLP-1 and PYY after exercise is blunted by postexercise nutrient intake. Energy intake the day after exercise is not influenced by postexercise fasting.


Subject(s)
Appetite , Exercise , Fasting , Hunger , Satiation , Adult , Appetite Regulation , Cross-Over Studies , Energy Intake , Female , Ghrelin/blood , Glucagon-Like Peptide 1/blood , Humans , Male , Peptide YY/blood , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...