Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
Sci Rep ; 14(1): 1914, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38253723

ABSTRACT

Detecting change in water quality is key to providing evidence of progress towards meeting water quality objectives. A key measure for detecting change is statistical power. Here we calculate statistical power for all regularly (monthly) monitored streams in New Zealand to test the effectiveness of monitoring for policy that aims to decrease contaminant (phosphorus and nitrogen species, E. coli and visual clarity) concentrations to threshold levels in 5 or 20 years. While > 95% of all monitored sites had sufficient power and samples to detect change in nutrients and clarity over 20 years, on average, sampling frequency would have to double to detect changes in E. coli. Furthermore, to detect changes in 5 years, sampling for clarity, dissolved reactive phosphorus and E. coli would have to increase up to fivefold. The cost of sampling was predicted to increase 5.3 and 4.1 times for 5 and 20 years, respectively. A national model of statistical power was used to demonstrate that a similar number of samples (and cost) would be required for any new monitoring sites. Our work suggests that demonstrating the outcomes of implementing policy for water quality improvement may not occur without a step change in investment into monitoring systems. Emerging sampling technologies have potential to reduce the cost, but existing monitoring networks may also have to be rationalised to provide evidence that water quality is meeting objectives. Our study has important implications for investment decisions involving balancing the need for intensively sampled sites where changes in water quality occur rapidly versus other sites which provide long-term time series.


Subject(s)
Escherichia coli , Water Quality , Investments , Phosphorus , Policy
2.
Mar Pollut Bull ; 172: 112800, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34403923

ABSTRACT

Agriculture is a major contributor to marine nitrogen pollution, and treatment wetlands can be a strategy to reduce it. However, few studies have assessed the potential of treatment wetlands to mitigate nitrogen pollution in tropical regions. We quantify the nitrogen removal rates of four recently constructed treatment wetlands in tropical Australia. We measured denitrification potential (Dt), the inflow-outflow of nutrients, and tested whether the environment in these tropical catchments is favourable for nitrogen removal. Dt was detected in three of the four systems with rates between 2.0 and 12.0 mg m-2 h-1; the highest rates were measured in anoxic soils (ORP -100 to 300 mV) that were rich in carbon and nitrogen (>2% and >0.2%, respectively). The highest nitrogen removal rates were measured when NO3--N concentrations were >0.4 mg L-1 and when water flows were slow. Treatment wetlands in tropical regions can deliver high removal rates of nitrogen and other pollutants when adequately managed. This strategy can reduce nutrient loads and their impacts on sensitive coastal zones such as the Great Barrier Reef.


Subject(s)
Nitrogen , Wetlands , Agriculture , Carbon , Denitrification , Nitrogen/analysis , Soil
3.
Science ; 367(6481)2020 02 28.
Article in English | MEDLINE | ID: mdl-32054695

ABSTRACT

The New Horizons spacecraft's encounter with the cold classical Kuiper Belt object (486958) Arrokoth (provisional designation 2014 MU69) revealed a contact-binary planetesimal. We investigated how Arrokoth formed and found that it is the product of a gentle, low-speed merger in the early Solar System. Its two lenticular lobes suggest low-velocity accumulation of numerous smaller planetesimals within a gravitationally collapsing cloud of solid particles. The geometric alignment of the lobes indicates that they were a co-orbiting binary that experienced angular momentum loss and subsequent merger, possibly because of dynamical friction and collisions within the cloud or later gas drag. Arrokoth's contact-binary shape was preserved by the benign dynamical and collisional environment of the cold classical Kuiper Belt and therefore informs the accretion processes that operated in the early Solar System.

4.
Harmful Algae ; 91: 101601, 2020 01.
Article in English | MEDLINE | ID: mdl-32057347

ABSTRACT

Harmful cyanobacterial blooms (=cyanoHABs) are an increasing feature of many waterbodies throughout the world. Many bloom-forming species produce toxins, making them of particular concern for drinking water supplies, recreation and fisheries in waterbodies along the freshwater to marine continuum. Global changes resulting from human impacts, such as climate change, over-enrichment and hydrological alterations of waterways, are major drivers of cyanoHAB proliferation and persistence. This review advocates that to better predict and manage cyanoHABs in a changing world, researchers need to leverage studies undertaken to date, but adopt a more complex and definitive suite of experiments, observations, and models which can effectively capture the temporal scales of processes driven by eutrophication and a changing climate. Better integration of laboratory culture and field experiments, as well as whole system and multiple-system studies are needed to improve confidence in models predicting impacts of climate change and anthropogenic over-enrichment and hydrological modifications. Recent studies examining adaptation of species and strains to long-term perturbations, e.g. temperature and carbon dioxide (CO2) levels, as well as incorporating multi-species and multi-stressor approaches emphasize the limitations of approaches focused on single stressors and individual species. There are also emerging species of concern, such as toxic benthic cyanobacteria, for which the effects of global change are less well understood, and require more detailed study. This review provides approaches and examples of studies tackling the challenging issue of understanding how global changes will affect cyanoHABs, and identifies critical information needs for effective prediction and management.


Subject(s)
Cyanobacteria , Climate Change , Eutrophication , Fisheries , Fresh Water , Humans
5.
Sci Rep ; 8(1): 17736, 2018 12 10.
Article in English | MEDLINE | ID: mdl-30531915

ABSTRACT

Dissolved reactive phosphorous (DRP) in lake systems is conventionally considered to predominate over other dissolved P species, however, this view neglects an important set of interactions that occurs between P and reactive iron hydroxide surfaces. This study addresses the coupling of P with dispersed iron nanoparticles in lakes, an interaction that may fundamentally alter the bioavailability of P to phytoplankton. We used diffusive gradients in thin films (DGT) and ultrafiltration to study Fe-P coupling in the water column of a monomictic lake over a hydrological year. Fe and P were predominantly colloidal (particle diameters > ~5 nm < ~20 nm) in both oxic epilimnetic and anaerobic hypolimnetic waters, but they were both DGT-labile under sub-oxic conditions, consistent with diffusion and dissolution of Fe-and-P-bearing colloids within the DGT diffusive gel. During peak stratification, increases in Fe and P bioavailability were spatially and temporally coincident with Fe nanoparticle dissolution and the formation of a deep chlorophyll maximum at 5-8 m depth. These results provide a window into the coupling and decoupling of P with mobile iron colloids, with implications for our understanding of the behaviour of nutrients and their influence on phytoplankton community dynamics.

6.
Nature ; 540(7631): 94-96, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27851735

ABSTRACT

The deep nitrogen-covered basin on Pluto, informally named Sputnik Planitia, is located very close to the longitude of Pluto's tidal axis and may be an impact feature, by analogy with other large basins in the Solar System. Reorientation of Sputnik Planitia arising from tidal and rotational torques can explain the basin's present-day location, but requires the feature to be a positive gravity anomaly, despite its negative topography. Here we argue that if Sputnik Planitia did indeed form as a result of an impact and if Pluto possesses a subsurface ocean, the required positive gravity anomaly would naturally result because of shell thinning and ocean uplift, followed by later modest nitrogen deposition. Without a subsurface ocean, a positive gravity anomaly requires an implausibly thick nitrogen layer (exceeding 40 kilometres). To prolong the lifetime of such a subsurface ocean to the present day and to maintain ocean uplift, a rigid, conductive water-ice shell is required. Because nitrogen deposition is latitude-dependent, nitrogen loading and reorientation may have exhibited complex feedbacks.

7.
Science ; 351(6279): aae0030, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26989256

ABSTRACT

The New Horizons mission has provided resolved measurements of Pluto's moons Styx, Nix, Kerberos, and Hydra. All four are small, with equivalent spherical diameters of ~40 kilometers for Nix and Hydra and ~10 kilometers for Styx and Kerberos. They are also highly elongated, with maximum to minimum axis ratios of ~2. All four moons have high albedos (~50 to 90%) suggestive of a water-ice surface composition. Crater densities on Nix and Hydra imply surface ages of at least 4 billion years. The small moons rotate much faster than synchronous, with rotational poles clustered nearly orthogonal to the common pole directions of Pluto and Charon. These results reinforce the hypothesis that the small moons formed in the aftermath of a collision that produced the Pluto-Charon binary.

8.
Nature ; 522(7554): 45-9, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26040889

ABSTRACT

Four small moons--Styx, Nix, Kerberos and Hydra--follow near-circular, near-equatorial orbits around the central 'binary planet' comprising Pluto and its large moon, Charon. New observational details of the system have emerged following the discoveries of Kerberos and Styx. Here we report that Styx, Nix and Hydra are tied together by a three-body resonance, which is reminiscent of the Laplace resonance linking Jupiter's moons Io, Europa and Ganymede. Perturbations by the other bodies, however, inject chaos into this otherwise stable configuration. Nix and Hydra have bright surfaces similar to that of Charon. Kerberos may be much darker, raising questions about how a heterogeneous satellite system might have formed. Nix and Hydra rotate chaotically, driven by the large torques of the Pluto-Charon binary.

9.
Environ Sci Process Impacts ; 15(6): 1137-52, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23652422

ABSTRACT

High-frequency sampling of two major stream inflows to a large eutrophic lake (Lake Rotorua, New Zealand) was conducted to measure inputs of total suspended sediment (TSS), and fractions of nitrogen and phosphorus (P). A total of 17 rain events were sampled, including three during which both streams were simultaneously monitored to quantify how concentration-discharge (Q) relationships varied between catchments during similar hydrological conditions. Dissolved inorganic nitrogen (DIN) concentrations declined slightly during events, reflecting dilution of groundwater inputs by rainfall, whereas dissolved inorganic P (PO4-P) concentrations were variable and unrelated to Q, suggesting dynamic sorptive behaviour. Event loads of total nitrogen (TN) were predominantly DIN, which is available for immediate uptake by primary producers, whereas total phosphorus (TP) loads predominantly comprised particulate P (less labile). Positive correlations between Q and concentrations of TP (and to a lesser extent TN) reflected increased particulate nutrient concentrations at high flows. Consequently, load estimates based on hourly Q during storm events and concentrations of routine monthly samples (mostly base flow) under-estimated TN and TP loads by an average of 19% and 40% respectively. Hysteresis with Q was commonly observed and inclusion of hydrological variables that reflect Q history in regression models improved predictions of TN and TP concentrations. Lorenz curves describing the proportions of cumulative load versus cumulative time quantified temporal inequality in loading. In the two study streams, 50% of estimated two-year loads of TN, TP and TSS were transported in 202-207, 76-126 and 1-8 days respectively. This study quantifies how hydrological and landscape factors can interact to influence pollutant flux at the catchment scale and highlights the importance of including storm transfers in lake loading estimates.


Subject(s)
Geologic Sediments/analysis , Lakes/chemistry , Nitrogen/analysis , Phosphorus/analysis , Rivers/chemistry , Environmental Monitoring , Rain/chemistry , Water Movements
11.
Nature ; 412(6843): 132-3, 2001 Jul 12.
Article in English | MEDLINE | ID: mdl-11449251
12.
Science ; 274(5292): 1501-3, 1996 Nov 29.
Article in English | MEDLINE | ID: mdl-8929405

ABSTRACT

From September 1991 to October 1992, the cosmic dust detector on the Ulysses spacecraft recorded 11 short bursts, or streams, of dust. These dust grains emanated from the jovian system, and their trajectories were strongly affected by solar wind magnetic field forces. Analyses of the on-board measurements of these fields, and of stream approach directions, show that stream-associated dust grain masses are of the order of 10(-18) gram and dust grain velocities exceed 200 kilometers per second. These masses and velocities are, respectively, about 10(3) times less massive and 5 to 10 times faster than earlier reported.


Subject(s)
Cosmic Dust , Jupiter , Magnetics
13.
Science ; 268(5213): 1016-9, 1995 May 19.
Article in English | MEDLINE | ID: mdl-17774227

ABSTRACT

Along Ulysses' path from Jupiter to the south ecliptic pole, the onboard dust detector measured a dust impact rate that varied slowly from 0.2 to 0.5 impacts per day. The dominant component of the dust flux arrived from an ecliptic latitude and longitude of 100 + 10 degrees and 280 degrees +/- 30 degrees which indicates an interstellar origin. An additional flux of small particles, which do not come from the interstellar direction and are unlikely to be zodiacal dust grains, appeared south of -45 degrees latitude. One explanation is that these particles are beta-meteoroids accelerated away from the sun by radiation pressure and electromagnetic forces.

14.
Science ; 264(5158): 550-3, 1994 Apr 22.
Article in English | MEDLINE | ID: mdl-17732738

ABSTRACT

Saturn's diffuse E ring spans the region between 3 and 8 saturnian radii (R(s)), has its peak brightness near the orbit of the satellite Enceladus (3.95 R(s)), and is thought to be composed primarily of icy particles 1.0 +/- 0.3 micrometers in radius. Such particles are shown to move periodically along highly elliptical paths that cross the orbits of several saturnian satellites; the resulting energetic collisions of E ring particles with embedded satellites are capable of sustaining the E ring at its current optical depth. With several reasonable assumptions, this model naturally selects Enceladus as the primary source of ring material and may also provide mechanisms that explain the generation of the unusual amount of submicrometer dust in the neighboring F and G rings, the excess of OH molecules observed within the E ring, and the orbital brightness variations of nearby satellites.

17.
Science ; 258(5085): 1078, 1992 Nov 13.
Article in English | MEDLINE | ID: mdl-17789069
20.
Science ; 258(5082): 570-1, 1992 Oct 23.
Article in English | MEDLINE | ID: mdl-17748885
SELECTION OF CITATIONS
SEARCH DETAIL
...