Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Plant Physiol ; 171(12): 977-85, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24974323

ABSTRACT

Global warming will increase heat waves, but effects of abrupt heat stress on shoot-root interactions have rarely been studied in heat-tolerant species, and abrupt heat-stress effects on root N uptake and shoot C flux to roots and soil remains uncertain. We investigated effects of a high-temperature event on shoot vs. root growth and function, including transfer of shoot C to roots and soil and uptake and translocation of soil N by roots in the warm-season drought-tolerant C4 prairie grass, Andropogon gerardii. We heated plants in the lab and field (lab=5.5days at daytime of 30+5 or 10°C; field=5days at ambient (up to 32°C daytime) vs. ambient +10°C). Heating had small or no effects on photosynthesis, stomatal conductance, leaf water potential, and shoot mass, but increased root mass and decreased root respiration and exudation per g. (13)C-labeling indicated that heating increased transfer of recently-fixed C from shoot to roots and soil (the latter likely via increased fine-root turnover). Heating decreased efficiency of N uptake by roots (uptake/g root), but did not affect total N uptake or the transfer of labeled soil (15)N to shoots. Though heating increased soil temperature in the lab, it did not do so in the field (10cm depth); yet results were similar for lab and field. Hence, acute heating affected roots more than shoots in this stress-tolerant species, increasing root mass and C loss to soil, but decreasing function per g root, and some of these effects were likely independent of direct effects from soil heating.


Subject(s)
Adaptation, Physiological , Andropogon/physiology , Carbon/metabolism , Hot Temperature , Nitrogen/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Stress, Physiological , Carbon Isotopes , Cell Respiration , Nitrogen Isotopes , Photosynthesis , Plant Stomata/physiology , Soil , Time Factors
2.
Am J Bot ; 101(1): 34-44, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24355208

ABSTRACT

PREMISE OF THE STUDY: Determining effects of elevated CO2 and N on photosynthetic thermotolerance is critical for predicting plant responses to global warming. METHODS: We grew Hordeum vulgare (barley, C3) and Zea mays (corn, C4) at current or elevated CO2 (370, 700 ppm) and limiting or optimal soil N (0.5, 7.5 mmol/L). We assessed thermotolerance of net photosynthesis (Pn), photosystem II efficiency in the light (Fv'/Fm'), photochemical quenching (qp), carboxylation efficiency (CE), and content of rubisco activase and major heat-shock proteins (HSPs). KEY RESULTS: For barley, elevated CO2 had no effect on Pn, qp, and CE at both high and low N and only a positive effect on Fv'/Fm' at high N. However, for corn, Pn, Fv'/Fm', qp, and CE were decreased substantially by elevated CO2 under high and low N, with greater decreases at high N for all but qp. The negative effects of high CO2 during heat stress on photosynthesis were correlated with rubisco activase and HSPs content, which decreased with heat stress, especially for low-N corn. CONCLUSION: These results indicate that stimulatory effects of elevated CO2 at normal temperatures on photosynthesis and growth (only found for high-N barley) may be partly offset by neutral or negative effects during heat stress, especially for C4 species. Thus, CO2 and N effects on photosynthetic thermotolerance may contribute to changes in plant productivity, distribution, and diversity in future.


Subject(s)
Adaptation, Physiological/drug effects , Carbon Dioxide/pharmacology , Heat-Shock Response/drug effects , Hordeum/physiology , Nitrogen/pharmacology , Photosynthesis/drug effects , Zea mays/physiology , Adaptation, Physiological/radiation effects , Analysis of Variance , Biomass , Heat-Shock Proteins/metabolism , Heat-Shock Response/radiation effects , Hordeum/drug effects , Hordeum/growth & development , Hordeum/radiation effects , Hot Temperature , Light , Photosynthesis/radiation effects , Photosystem II Protein Complex/metabolism , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Stomata/drug effects , Plant Stomata/physiology , Zea mays/drug effects , Zea mays/growth & development , Zea mays/radiation effects
3.
Plant Physiol Biochem ; 49(8): 898-908, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21684754

ABSTRACT

Production of chloroplast-localized small heat-shock proteins (Cp-sHSP) is correlated with increased thermotolerance in plants. Ecotypic variation in function and expression of Cp-sHSPs was analyzed in two Chenopodium album ecotypes from cool vs. warm-temperate USA habitats [New York (NY) and Mississippi (MS) respectively]. P(et) was more heat tolerant in the MS than the NY ecotype, and MS ecotype derived proportionally greater protection of P(et) by Cp-sHSP during high temperatures. Four genes encoding Cp-sHSPs were isolated and characterized: CaHSP25.99n (NY-1) and CaHSP26.23n (NY-2) from NY ecotype, and CaHSP26.04m (MS-1) and CaHSP26.26m (MS-2) from MS ecotype. The genes were nearly identical in predicted amino-acid sequence and hydrophobicity. Gene expression analysis indicated that MS-1 and MS-2 transcripts were constitutively expressed at low levels at 25 °C, while no NY-1 and NY-2 transcripts were detected at this temperature. Maximum accumulation of NY-1 and NY-2 transcripts occurred at 33 °C and 40 °C for MS-1 and MS-2. Immunoblot analysis revealed that (1) protein expression was highest at 37 °C in both ecotypes, but was greater in MS than NY ecotype at 40 °C; and (2) import of Cp-sHSP into chloroplasts was more heat-labile in NY ecotype. The higher expression of one isoform in MS ecotype may contribute to its enhanced thermotolerance. Absence of correlation between protein and transcript levels, suggests the post-transcriptional regulation is occurring. Promoter analysis of these genes revealed significant variations in heat-shock elements (HSE), core motifs required for heat-shock-factor binding. We propose a correlation between unique promoter architecture, Cp-sHSP expression and thermotolerance in both ecotypes.


Subject(s)
Chenopodium album/physiology , Heat-Shock Proteins, Small/genetics , 5' Untranslated Regions , Base Sequence , Chenopodium album/genetics , Chloroplasts/genetics , Chloroplasts/metabolism , Cloning, Molecular , Conserved Sequence , Electron Transport , Gene Expression Regulation, Plant , Heat-Shock Proteins, Small/metabolism , Hot Temperature , Hydrophobic and Hydrophilic Interactions , Mississippi , Molecular Sequence Data , New York , Photosystem II Protein Complex/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Protein Isoforms/genetics , Protein Isoforms/metabolism , Sequence Homology, Amino Acid
4.
J Integr Plant Biol ; 50(11): 1375-87, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19017125

ABSTRACT

Determining effects of elevated CO2 on the tolerance of photosynthesis to acute heat-stress (heat wave) is necessary for predicting plant responses to global warming, as photosynthesis is thermolabile and acute heat-stress and atmospheric CO2 will increase in the future. Few studies have examined this, and past results are variable, which may be due to methodological variation. To address this, we grew two C3 and two C4 species at current or elevated CO2 and three different growth temperatures (GT). We assessed photosynthetic thermotolerance in both unacclimated (basal tolerance) and pre-heat-stressed (preHS = acclimated) plants. In C3 species, basal thermotolerance of net photosynthesis (P(n)) was increased in high CO2, but in C4 species, P(n) thermotlerance was decreased by high CO2 (except Zea mays at low GT); CO2 effects in preHS plants were mostly small or absent, though high CO2 was detrimental in one C3 and one C4 species at warmer GT. Though high CO2 generally decreased stomatal conductance, decreases in P(n) during heat stress were mostly due to non-stomatal effects. Photosystem II (PSII) efficiency was often decreased by high CO2 during heat stress, especially at high GT; CO2 effects on post-PSII electron transport were variable. Thus, high CO2 often affected photosynthetic theromotolerance, and the effects varied with photosynthetic pathway, growth temperature, and acclimation state. Most importantly, in heat-stressed plants at normal or warmer growth temperatures, high CO2 may often decrease, or not benefit as expected, tolerance of photosynthesis to acute heat stress. Therefore, interactive effects of elevated CO2 and warmer growth temperatures on acute heat tolerance may contribute to future changes in plant productivity, distribution, and diversity.


Subject(s)
Carbon Dioxide/toxicity , Photosynthesis/drug effects , Photosynthesis/physiology , Plants/metabolism , Temperature , Amaranthus/drug effects , Amaranthus/physiology , Chenopodium album/drug effects , Chenopodium album/physiology , Electron Transport/drug effects , Pisum sativum/drug effects , Pisum sativum/physiology , Plant Transpiration/drug effects , Plants/drug effects , Zea mays/drug effects , Zea mays/physiology
5.
J Integr Plant Biol ; 50(11): 1416-25, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19017129

ABSTRACT

More intense, more frequent, and longer heat-waves are expected in the future due to global warming, which could have dramatic ecological impacts. Increasing nitrogen (N) availability and its dynamics will likely impact plant responses to heat stress and carbon (C) sequestration in terrestrial ecosystems. This field study examined the effects of N availability on plant response to heat-stress (HS) treatment in naturally-occurring vegetation. HS (5 d at ambient or 40.5 degrees C) and N treatments (+/-N) were applied to 16 1 m(2) plots in restored prairie vegetation dominated by Andropogon gerardii (warm-season C4 grass) and Solidago canadensis (warm-season C3 forb). Before, during, and after HS, air, canopy, and soil temperature were monitored; net CO2 assimilation (P(n)), quantum yield of photosystem II (Phi(PSII)), stomatal conductance (g(s)), and leaf water potential (Psi(w)) of the dominant species and soil respiration (R(soil)) of each plot were measured daily during HS. One week after HS, plots were harvested, and C% and N% were determined for rhizosphere and bulk soil, and above-ground tissue (green/senescent leaf, stem, and flower). Photosynthetic N-use efficiency (PNUE) and N resorption rate (NRR) were calculated. HS decreased P(n), g(s), Psi(w), and PNUE for both species, and +N treatment generally increased these variables (+/-HS), but often slowed their post-HS recovery. Aboveground biomass tended to decrease with HS in both species (and for green leaf mass in S. canadensis), but decrease with +N for A. gerardii and increase with +N for S. canadensis. For A. gerardii, HS tended to decrease N% in green tissues with +N, whereas in S. canadensis, HS increased N% in green leaves. Added N decreased NRR for A. gerardii and HS increased NRR for S. canadensis. These results suggest that heat waves, though transient, could have significant effects on plants, communities, and ecosystem N cycling, and N can influence the effect of heat waves.


Subject(s)
Nitrogen/metabolism , Nitrogen/pharmacology , Plant Development , Plants/drug effects , Temperature , Andropogon/drug effects , Andropogon/growth & development , Andropogon/metabolism , Biomass , Ecosystem , Plants/metabolism , Solidago/drug effects , Solidago/growth & development , Solidago/metabolism
6.
Am J Bot ; 95(2): 165-76, 2008 Feb.
Article in English | MEDLINE | ID: mdl-21632342

ABSTRACT

Determining the effect of elevated CO(2) on the tolerance of photosynthesis to acute heat stress (AHS) is necessary for predicting plant responses to global warming because photosynthesis is heat sensitive and AHS and atmospheric CO(2) will increase in the future. Few studies have examined this effect, and past results were variable, which may be related to methodological variation among studies. In this study, we grew 11 species that included cool and warm season and C(3), C(4), and CAM species at current or elevated (370 or 700 ppm) CO(2) and at species-specific optimal growth temperatures and at 30°C (if optimal ≠ 30°C). We then assessed thermotolerance of net photosynthesis (P(n)), stomatal conductance (g(st)), leaf internal [CO(2)], and photosystem II (PSII) and post-PSII electron transport during AHS. Thermotolerance of P(n) in elevated (vs. ambient) CO(2) increased in C(3), but decreased in C(4) (especially) and CAM (high growth temperature only), species. In contrast, elevated CO(2) decreased electron transport in 10 of 11 species. High CO(2) decreased g(st) in five of nine species, but stomatal limitations to P(n) increased during AHS in only two cool-season C(3) species. Thus, benefits of elevated CO(2) to photosynthesis at normal temperatures may be partly offset by negative effects during AHS, especially for C(4) species, so effects of elevated CO(2) on acute heat tolerance may contribute to future changes in plant productivity, distribution, and diversity.

SELECTION OF CITATIONS
SEARCH DETAIL
...