Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Magn Reson Med ; 91(5): 2010-2027, 2024 May.
Article in English | MEDLINE | ID: mdl-38098428

ABSTRACT

PURPOSE: To develop a deep image prior (DIP) reconstruction for B1 + -corrected 2D cine MR fingerprinting (MRF). METHODS: The proposed method combines low-rank (LR) modeling with a DIP to generate cardiac phase-resolved parameter maps without motion correction, employing self-supervised training to enforce consistency with undersampled spiral k-space data. Two implementations were tested: one approach (DIP) for cine T1 , T2 , and M0 mapping, and a second approach (DIP with effective B1 + estimation [DIP-B1]) that also generated an effective B1 + map to correct for errors due to RF transmit inhomogeneities, through-plane motion, and blood flow. Cine MRF data were acquired in 14 healthy subjects and four reconstructions were compared: LR, low-rank motion-corrected (LRMC), DIP, and DIP-B1. Results were compared to diastolic ECG-triggered MRF, MOLLI, and T2 -prep bSSFP. Additionally, bright-blood and dark-blood images calculated from cine MRF maps were used to quantify ventricular function and compared to reference cine measurements. RESULTS: DIP and DIP-B1 outperformed other cine MRF reconstructions with improved noise suppression and delineation of high-resolution details. Within-segment variability in the myocardium (reported as the coefficient of variation for T1 /T2 ) was lowest for DIP-B1 (2.3/8.3%) followed by DIP (2.7/8.7%), LRMC (3.5/10.5%), and LR (15.3/39.6%). Spatial homogeneity improved with DIP-B1 having the lowest intersegment variability (2.6/4.1%). The mean bias in ejection fraction was -1.1% compared to reference cine scans. CONCLUSION: A DIP reconstruction for 2D cine MRF enabled cardiac phase-resolved mapping of T1 , T2 , M0 , and the effective B1 + with improved noise suppression and precision compared to LR and LRMC.


Subject(s)
Heart , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Heart/diagnostic imaging , Myocardium , Image Processing, Computer-Assisted/methods , Healthy Volunteers , Phantoms, Imaging
2.
NMR Biomed ; 37(1): e5043, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37740596

ABSTRACT

Late gadolinium enhancement (LGE) MRI is the non-invasive reference standard for identifying myocardial scar and fibrosis but has limitations, including difficulty delineating subendocardial scar and operator dependence on image quality. The purpose of this work is to assess the feasibility of generating multi-contrast synthetic LGE images from post-contrast T1 and T2 maps acquired using magnetic resonance fingerprinting (MRF). Fifteen consecutive patients with a history of prior ischemic cardiomyopathy (12 men; mean age 63  ±  13 years) were prospectively scanned at 1.5 T between Oct 2020 and May 2021 using conventional LGE and MRF after injection of gadolinium contrast. Three classes of synthetic LGE images were derived from MRF post-contrast T1 and T2 maps: bright-blood phase-sensitive inversion recovery (PSIR), black- and gray-blood T2 -prepared PSIR (T2 -PSIR), and a novel "tissue-optimized" image to enhance differentiation among scar, viable myocardium, and blood. Image quality was assessed on a 1-5 Likert scale by two cardiologists, and contrast was quantified as the mean absolute difference (MAD) in pixel intensities between two tissues, with different methods compared using Kruskal-Wallis with Bonferroni post hoc tests. Per-patient and per-segment scar detection rates were evaluated using conventional LGE images as reference. Image quality scores were highest for synthetic PSIR (4.0) and reference images (3.8), followed by synthetic tissue-optimized (3.3), gray-blood T2 -PSIR (3.0), and black-blood T2 -PSIR (2.6). Among synthetic images, PSIR yielded the highest myocardium/scar contrast (MAD = 0.42) but the lowest blood/scar contrast (MAD = 0.05), and vice versa for T2 -PSIR, while tissue-optimized images achieved a balance among all tissues (myocardium/scar MAD = 0.16, blood/scar MAD = 0.26, myocardium/blood MAD = 0.10). Based on reference mid-ventricular LGE scans, 13/15 patients had myocardial scar. The per-patient sensitivity/accuracy for synthetic images were the following: PSIR, 85/87%; black-blood T2 -PSIR, 62/53%; gray-blood T2 -PSIR, 100/93%; tissue optimized, 100/93%. Synthetic multi-contrast LGE images can be generated from post-contrast MRF data without additional scan time, with initial feasibility shown in ischemic cardiomyopathy patients.


Subject(s)
Cardiomyopathies , Myocardial Ischemia , Male , Humans , Contrast Media , Gadolinium , Cicatrix/diagnostic imaging , Cicatrix/pathology , Magnetic Resonance Imaging/methods , Myocardium/pathology , Myocardial Ischemia/diagnostic imaging , Myocardial Ischemia/pathology , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/pathology , Magnetic Resonance Spectroscopy
3.
J Magn Reson Imaging ; 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38153855

ABSTRACT

Cardiovascular magnetic resonance (CMR) is an established imaging modality with proven utility in assessing cardiovascular diseases. The ability of CMR to characterize myocardial tissue using T1 - and T2 -weighted imaging, parametric mapping, and late gadolinium enhancement has allowed for the non-invasive identification of specific pathologies not previously possible with modalities like echocardiography. However, CMR examinations are lengthy and technically complex, requiring multiple pulse sequences and different anatomical planes to comprehensively assess myocardial structure, function, and tissue composition. To increase the overall impact of this modality, there is a need to simplify and shorten CMR exams to improve access and efficiency, while also providing reproducible quantitative measurements. Multiparametric MRI techniques that measure multiple tissue properties offer one potential solution to this problem. This review provides an in-depth look at one such multiparametric approach, cardiac magnetic resonance fingerprinting (MRF). The article is structured as follows. First, a brief review of single-parametric and (non-Fingerprinting) multiparametric CMR mapping techniques is presented. Second, a general overview of cardiac MRF is provided covering pulse sequence implementation, dictionary generation, fast k-space sampling methods, and pattern recognition. Third, recent technical advances in cardiac MRF are covered spanning a variety of topics, including simultaneous multislice and 3D sampling, motion correction algorithms, cine MRF, synthetic multicontrast imaging, extensions to measure additional clinically important tissue properties (proton density fat fraction, T2 *, and T1ρ ), and deep learning methods for image reconstruction and parameter estimation. The last section will discuss potential clinical applications, concluding with a perspective on how multiparametric techniques like MRF may enable streamlined CMR protocols. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 1.

4.
MAGMA ; 36(3): 451-464, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37043121

ABSTRACT

OBJECTIVE: This study combines a deep image prior with low-rank subspace modeling to enable real-time (free-breathing and ungated) functional cardiac imaging on a commercial 0.55 T scanner. MATERIALS AND METHODS: The proposed low-rank deep image prior (LR-DIP) uses two u-nets to generate spatial and temporal basis functions that are combined to yield dynamic images, with no need for additional training data. Simulations and scans in 13 healthy subjects were performed at 0.55 T and 1.5 T using a golden angle spiral bSSFP sequence with images reconstructed using [Formula: see text]-ESPIRiT, low-rank plus sparse (L + S) matrix completion, and LR-DIP. Cartesian breath-held ECG-gated cine images were acquired for reference at 1.5 T. Two cardiothoracic radiologists rated images on a 1-5 scale for various categories, and LV function measurements were compared. RESULTS: LR-DIP yielded the lowest errors in simulations, especially at high acceleration factors (R [Formula: see text] 8). LR-DIP ejection fraction measurements agreed with 1.5 T reference values (mean bias - 0.3% at 0.55 T and - 0.2% at 1.5 T). Compared to reference images, LR-DIP images received similar ratings at 1.5 T (all categories above 3.9) and slightly lower at 0.55 T (above 3.4). CONCLUSION: Feasibility of real-time functional cardiac imaging using a low-rank deep image prior reconstruction was demonstrated in healthy subjects on a commercial 0.55 T scanner.


Subject(s)
Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging, Cine , Humans , Magnetic Resonance Imaging, Cine/methods , Image Interpretation, Computer-Assisted/methods , Respiration , Heart/diagnostic imaging , Breath Holding , Reproducibility of Results
5.
Curr Cardiol Rep ; 25(3): 119-131, 2023 03.
Article in English | MEDLINE | ID: mdl-36805913

ABSTRACT

PURPOSE OF REVIEW: Cardiac magnetic resonance fingerprinting (cMRF) has developed as a technique for rapid, multi-parametric tissue property mapping that has potential to both improve cardiac MRI exam efficiency and expand the information captured. In this review, we describe the cMRF technique, summarize technical developments and in vivo reports, and highlight potential clinical applications. RECENT FINDINGS: Technical developments in cMRF continue to progress rapidly, including motion compensated reconstruction, additional tissue property quantification, signal time course analysis, and synthetic LGE image generation. Such technical developments can enable simplified CMR protocols by combining multiple evaluations into a single protocol and reducing the number of breath-held scans. cMRF continues to be reported for use in a range of pathologies; however barriers to clinical implementation remain. Technical developments are described in this review, followed by a focus on potential clinical applications that they may support. Clinical translation of cMRF could shorten protocols, improve CMR accessibility, and provide additional information as compared to conventional cardiac parametric mapping methods. Current needs for clinical implementation are discussed, as well as how those needs may be met in order to bring cMRF from its current research setting to become a viable tool for patient care.


Subject(s)
Heart Diseases , Heart , Humans , Heart/diagnostic imaging , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Heart Diseases/diagnostic imaging
6.
Sci Rep ; 12(1): 18705, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36333385

ABSTRACT

Cardiac Magnetic Resonance Fingerprinting (cMRF) has been demonstrated to enable robust and accurate T1 and T2 mapping for the detection of myocardial fibrosis and edema. However, the relatively long acquisition window (250 ms) used in previous cMRF studies might leave it vulnerable to motion artifacts in patients with high heart rates. The goal of this study was therefore to compare cMRF with a short acquisition window (154 ms) and low-rank reconstruction to routine cardiac T1 and T2 mapping at 1.5 T. Phantom studies showed that the proposed cMRF had a high T1 and T2 accuracy over a wider range than routine mapping techniques. In 9 healthy volunteers, the proposed cMRF showed small but significant myocardial T1 and T2 differences compared to routine mapping (ΔT1 = 1.5%, P = 0.031 and ΔT2 = - 7.1%, P < 0.001). In 61 consecutive patients referred for CMR, the native T1 values were slightly lower (ΔT1 = 1.6%; P = 0.02), while T2 values did not show statistical difference (ΔT2 = 4.3%; P = 0.11). However, the difference was higher in post-contrast myocardial T1 values (ΔT1 = 12.3%; P < 0.001), which was reflected in the extracellular volume (ΔECV = 2.4%; P < 0.001). Across all subjects, the proposed cMRF had a lower precision when compared to routine techniques, although its higher spatial resolution enabled the visualization of smaller details.


Subject(s)
Heart , Magnetic Resonance Imaging, Cine , Humans , Magnetic Resonance Imaging, Cine/methods , Healthy Volunteers , Heart/diagnostic imaging , Magnetic Resonance Imaging/methods , Myocardium/pathology , Predictive Value of Tests
7.
Front Cardiovasc Med ; 9: 928546, 2022.
Article in English | MEDLINE | ID: mdl-35811730

ABSTRACT

The aim of this study is to shorten the breathhold and diastolic acquisition window in cardiac magnetic resonance fingerprinting (MRF) for simultaneous T1, T2, and proton spin density (M0) mapping to improve scan efficiency and reduce motion artifacts. To this end, a novel reconstruction was developed that combines low-rank subspace modeling with a deep image prior, termed DIP-MRF. A system of neural networks is used to generate spatial basis images and quantitative tissue property maps, with training performed using only the undersampled k-space measurements from the current scan. This approach avoids difficulties with obtaining in vivo MRF training data, as training is performed de novo for each acquisition. Calculation of the forward model during training is accelerated by using GRAPPA operator gridding to shift spiral k-space data to Cartesian grid points, and by using a neural network to rapidly generate fingerprints in place of a Bloch equation simulation. DIP-MRF was evaluated in simulations and at 1.5 T in a standardized phantom, 18 healthy subjects, and 10 patients with suspected cardiomyopathy. In addition to conventional mapping, two cardiac MRF sequences were acquired, one with a 15-heartbeat(HB) breathhold and 254 ms acquisition window, and one with a 5HB breathhold and 150 ms acquisition window. In simulations, DIP-MRF yielded decreased nRMSE compared to dictionary matching and a sparse and locally low rank (SLLR-MRF) reconstruction. Strong correlation (R2 > 0.999) with T1 and T2 reference values was observed in the phantom using the 5HB/150 ms scan with DIP-MRF. DIP-MRF provided better suppression of noise and aliasing artifacts in vivo, especially for the 5HB/150 ms scan, and lower intersubject and intrasubject variability compared to dictionary matching and SLLR-MRF. Furthermore, it yielded a better agreement between myocardial T1 and T2 from 15HB/254 ms and 5HB/150 ms MRF scans, with a bias of -9 ms for T1 and 2 ms for T2. In summary, this study introduces an extension of the deep image prior framework for cardiac MRF tissue property mapping, which does not require pre-training with in vivo scans, and has the potential to reduce motion artifacts by enabling a shortened breathhold and acquisition window.

8.
Int J Cardiol ; 351: 107-110, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34963645

ABSTRACT

BACKGROUND: Cardiac amyloidosis (CA) is an infiltrative cardiomyopathy with poor prognosis absent appropriate treatment. Elevated native myocardial T1 and T2 have been reported for CA, and tissue characterization by cardiac MRI may expedite diagnosis and treatment. Cardiac Magnetic Resonance Fingerprinting (cMRF) has the potential to enable tissue characterization for CA through rapid, simultaneous T1 and T2 mapping. Furthermore, cMRF signal timecourses may provide additional information beyond myocardial T1 and T2. METHODS: Nine CA patients and five controls were scanned at 3 T using a prospectively gated cMRF acquisition. Two cMRF-based analysis approaches were examined: (1) relaxometric-based linear discriminant analysis (LDA) using native T1 and T2, and (2) signal timecourse-based LDA. The Fisher coefficient was used to compare the separability of patient and control groups from both approaches. Leave-two-out cross-validation was employed to evaluate the classification error rates of both approaches. RESULTS: Elevated myocardial T1 and T2 was observed in patients vs controls (T1: 1395 ± 121 vs 1240 ± 36.4 ms, p < 0.05; T2: 36.8 ± 3.3 vs 31.8 ± 2.6 ms, p < 0.05). LDA scores were elevated in patients for relaxometric-based LDA (0.56 ± 0.28 vs 0.18 ± 0.13, p < 0.05) and timecourse-based LDA (0.97 ± 0.02 vs 0.02 ± 0.02, p < 0.05). The Fisher coefficient was greater for timecourse-based LDA (60.8) vs relaxometric-based LDA (1.6). Classification error rates were lower for timecourse-based LDA vs relaxometric-based LDA (12.6 ± 24.3 vs 22.5 ± 30.1%, p < 0.05). CONCLUSIONS: These findings suggest that cMRF may be a valuable technique for the detection and characterization of CA. Analysis of cMRF signal timecourse data may improve tissue characterization as compared to analysis of native T1 and T2 alone.


Subject(s)
Amyloidosis , Heart , Amyloidosis/diagnostic imaging , Humans , Magnetic Resonance Imaging , Magnetic Resonance Imaging, Cine/methods , Magnetic Resonance Spectroscopy , Myocardium , Phantoms, Imaging , Predictive Value of Tests
9.
Magn Reson Med ; 85(4): 2127-2135, 2021 04.
Article in English | MEDLINE | ID: mdl-33107162

ABSTRACT

PURPOSE: To develop a deep learning method for rapidly reconstructing T1 and T2 maps from undersampled electrocardiogram (ECG) triggered cardiac magnetic resonance fingerprinting (cMRF) images. METHODS: A neural network was developed that outputs T1 and T2 values when given a measured cMRF signal time course and cardiac RR interval times recorded by an ECG. Over 8 million cMRF signals, corresponding to 4000 random cardiac rhythms, were simulated for training. The training signals were corrupted by simulated k-space undersampling artifacts and random phase shifts to promote robust learning. The deep learning reconstruction was evaluated in Monte Carlo simulations for a variety of cardiac rhythms and compared with dictionary-based pattern matching in 58 healthy subjects at 1.5T. RESULTS: In simulations, the normalized root-mean-square error (nRMSE) for T1 was below 1% in myocardium, blood, and liver for all tested heart rates. For T2 , the nRMSE was below 4% for myocardium and liver and below 6% for blood for all heart rates. The difference in the mean myocardial T1 or T2 observed in vivo between dictionary matching and deep learning was 3.6 ms for T1 and -0.2 ms for T2 . Whereas dictionary generation and pattern matching required more than 4 min per slice, the deep learning reconstruction only required 336 ms. CONCLUSION: A neural network is introduced for reconstructing cMRF T1 and T2 maps directly from undersampled spiral images in under 400 ms and is robust to arbitrary cardiac rhythms, which paves the way for rapid online display of cMRF maps.


Subject(s)
Deep Learning , Heart/diagnostic imaging , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Phantoms, Imaging
10.
Proc IEEE Inst Electr Electron Eng ; 108(1): 69-85, 2020 Jan.
Article in English | MEDLINE | ID: mdl-33132408

ABSTRACT

Magnetic Resonance Fingerprinting (MRF) is an MRI-based method that can provide quantitative maps of multiple tissue properties simultaneously from a single rapid acquisition. Tissue property maps are generated by matching the complex signal evolutions collected at the scanner to a dictionary of signals derived using Bloch equation simulations. However, in some circumstances, the process of dictionary generation and signal matching can be time-consuming, reducing the utility of this technique. Recently, several groups have proposed using machine learning to accelerate the extraction of quantitative maps from MRF data. This article will provide an overview of current research that combines MRF and machine learning, as well as present original research demonstrating how machine learning can speed up dictionary generation for cardiac MRF.

11.
NMR Biomed ; 33(8): e4323, 2020 08.
Article in English | MEDLINE | ID: mdl-32500541

ABSTRACT

This study introduces a technique called cine magnetic resonance fingerprinting (cine-MRF) for simultaneous T1 , T2 and ejection fraction (EF) quantification. Data acquired with a free-running MRF sequence are retrospectively sorted into different cardiac phases using an external electrocardiogram (ECG) signal. A low-rank reconstruction with a finite difference sparsity constraint along the cardiac motion dimension yields images resolved by cardiac phase. To improve SNR and precision in the parameter maps, these images are nonrigidly registered to the same phase and matched to a dictionary to generate T1 and T2 maps. Cine images for computing left ventricular volumes and EF are also derived from the same data. Cine-MRF was tested in simulations using a numerical relaxation phantom. Phantom and in vivo scans of 19 subjects were performed at 3 T during a 10.9 seconds breath-hold with an in-plane resolution of 1.6 x 1.6 mm2 and 24 cardiac phases. Left ventricular EF values obtained with cine-MRF agreed with the conventional cine images (mean bias -1.0%). Average myocardial T1 times in diastole/systole were 1398/1391 ms with cine-MRF, 1394/1378 ms with ECG-triggered cardiac MRF (cMRF) and 1234/1212 ms with MOLLI; and T2 values were 30.7/30.3 ms with cine-MRF, 32.6/32.9 ms with ECG-triggered cMRF and 37.6/41.0 ms with T2 -prepared FLASH. Cine-MRF and ECG-triggered cMRF relaxation times were in good agreement. Cine-MRF T1 values were significantly longer than MOLLI, and cine-MRF T2 values were significantly shorter than T2 -prepared FLASH. In summary, cine-MRF can potentially streamline cardiac MRI exams by combining left ventricle functional assessment and T1 -T2 mapping into one time-efficient acquisition.


Subject(s)
Heart/diagnostic imaging , Magnetic Resonance Imaging, Cine/methods , Stroke Volume , Ventricular Function, Left , Breath Holding , Computer Simulation , Diastole , Electrocardiography , Humans , Magnetic Resonance Imaging, Cine/instrumentation , Phantoms, Imaging , Systole
12.
J Magn Reson Imaging ; 52(4): 1044-1052, 2020 10.
Article in English | MEDLINE | ID: mdl-32222092

ABSTRACT

BACKGROUND: Cardiac MR fingerprinting (cMRF) is a novel technique for simultaneous T1 and T2 mapping. PURPOSE: To compare T1 /T2 measurements, repeatability, and map quality between cMRF and standard mapping techniques in healthy subjects. STUDY TYPE: Prospective. POPULATION: In all, 58 subjects (ages 18-60). FIELD STRENGTH/SEQUENCE: cMRF, modified Look-Locker inversion recovery (MOLLI), and T2 -prepared balanced steady-state free precession (bSSFP) at 1.5T. ASSESSMENT: T1 /T2 values were measured in 16 myocardial segments at apical, medial, and basal slice positions. Test-retest and intrareader repeatability were assessed for the medial slice. cMRF and conventional mapping sequences were compared using ordinal and two alternative forced choice (2AFC) ratings. STATISTICAL TESTS: Paired t-tests, Bland-Altman analyses, intraclass correlation coefficient (ICC), linear regression, one-way analysis of variance (ANOVA), and binomial tests. RESULTS: Average T1 measurements were: basal 1007.4±96.5 msec (cMRF), 990.0±45.3 msec (MOLLI); medial 995.0±101.7 msec (cMRF), 995.6±59.7 msec (MOLLI); apical 1006.6±111.2 msec (cMRF); and 981.6±87.6 msec (MOLLI). Average T2 measurements were: basal 40.9±7.0 msec (cMRF), 46.1±3.5 msec (bSSFP); medial 41.0±6.4 msec (cMRF), 47.4±4.1 msec (bSSFP); apical 43.5±6.7 msec (cMRF), 48.0±4.0 msec (bSSFP). A statistically significant bias (cMRF T1 larger than MOLLI T1 ) was observed in basal (17.4 msec) and apical (25.0 msec) slices. For T2 , a statistically significant bias (cMRF lower than bSSFP) was observed for basal (-5.2 msec), medial (-6.3 msec), and apical (-4.5 msec) slices. Precision was lower for cMRF-the average of the standard deviation measured within each slice was 102 msec for cMRF vs. 61 msec for MOLLI T1 , and 6.4 msec for cMRF vs. 4.0 msec for bSSFP T2 . cMRF and conventional techniques had similar test-retest repeatability as quantified by ICC (0.87 cMRF vs. 0.84 MOLLI for T1 ; 0.85 cMRF vs. 0.85 bSSFP for T2 ). In the ordinal image quality comparison, cMRF maps scored higher than conventional sequences for both T1 (all five features) and T2 (four features). DATA CONCLUSION: This work reports on myocardial T1 /T2 measurements in healthy subjects using cMRF and standard mapping sequences. cMRF had slightly lower precision, similar test-retest and intrareader repeatability, and higher scores for map quality. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1 J. Magn. Reson. Imaging 2020;52:1044-1052.


Subject(s)
Heart , Magnetic Resonance Imaging , Adolescent , Adult , Healthy Volunteers , Heart/diagnostic imaging , Humans , Magnetic Resonance Spectroscopy , Middle Aged , Phantoms, Imaging , Prospective Studies , Reproducibility of Results , Young Adult
13.
Radiology ; 290(1): 33-40, 2019 01.
Article in English | MEDLINE | ID: mdl-30375925

ABSTRACT

Purpose To develop a fast three-dimensional method for simultaneous T1 and T2 quantification for breast imaging by using MR fingerprinting. Materials and Methods In this prospective study, variable flip angles and magnetization preparation modules were applied to acquire MR fingerprinting data for each partition of a three-dimensional data set. A fast postprocessing method was implemented by using singular value decomposition. The proposed technique was first validated in phantoms and then applied to 15 healthy female participants (mean age, 24.2 years ± 5.1 [standard deviation]; range, 18-35 years) and 14 female participants with breast cancer (mean age, 55.4 years ± 8.8; range, 39-66 years) between March 2016 and April 2018. The sensitivity of the method to B1 field inhomogeneity was also evaluated by using the Bloch-Siegert method. Results Phantom results showed that accurate and volumetric T1 and T2 quantification was achieved by using the proposed technique. The acquisition time for three-dimensional quantitative maps with a spatial resolution of 1.6 × 1.6 × 3 mm3 was approximately 6 minutes. For healthy participants, averaged T1 and T2 relaxation times for fibroglandular tissues at 3.0 T were 1256 msec ± 171 and 46 msec ± 7, respectively. Compared with normal breast tissues, higher T2 relaxation time (68 msec ± 13) was observed in invasive ductal carcinoma (P < .001), whereas no statistical difference was found in T1 relaxation time (1183 msec ± 256; P = .37). Conclusion A method was developed for breast imaging by using the MR fingerprinting technique, which allows simultaneous and volumetric quantification of T1 and T2 relaxation times for breast tissues. © RSNA, 2018 Online supplemental material is available for this article.


Subject(s)
Breast/diagnostic imaging , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Adolescent , Adult , Aged , Breast Neoplasms/diagnostic imaging , Female , Humans , Middle Aged , Phantoms, Imaging , Prospective Studies , Young Adult
14.
NMR Biomed ; 32(2): e4041, 2019 02.
Article in English | MEDLINE | ID: mdl-30561779

ABSTRACT

This study introduces a technique for simultaneous multislice (SMS) cardiac magnetic resonance fingerprinting (cMRF), which improves the slice coverage when quantifying myocardial T1, T2 , and M0 . The single-slice cMRF pulse sequence was modified to use multiband (MB) RF pulses for SMS imaging. Different RF phase schedules were used to excite each slice, similar to POMP or CAIPIRINHA, which imparts tissues with a distinguishable and slice-specific magnetization evolution over time. Because of the high net acceleration factor (R = 48 in plane combined with the slice acceleration), images were first reconstructed with a low rank technique before matching data to a dictionary of signal timecourses generated by a Bloch equation simulation. The proposed method was tested in simulations with a numerical relaxation phantom. Phantom and in vivo cardiac scans of 10 healthy volunteers were also performed at 3 T. With single-slice acquisitions, the mean relaxation times obtained using the low rank cMRF reconstruction agree with reference values. The low rank method improves the precision in T1 and T2 for both single-slice and SMS cMRF, and it enables the acquisition of maps with fewer artifacts when using SMS cMRF at higher MB factors. With this technique, in vivo cardiac maps were acquired from three slices simultaneously during a breathhold lasting 16 heartbeats. SMS cMRF improves the efficiency and slice coverage of myocardial T1 and T2 mapping compared with both single-slice cMRF and conventional cardiac mapping sequences. Thus, this technique is a first step toward whole-heart simultaneous T1 and T2 quantification with cMRF.


Subject(s)
Heart/diagnostic imaging , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Computer Simulation , Humans , Linear Models , Phantoms, Imaging , Signal Processing, Computer-Assisted
15.
Magn Reson Imaging ; 53: 40-51, 2018 11.
Article in English | MEDLINE | ID: mdl-29964183

ABSTRACT

This study aims to improve the accuracy and consistency of T1 and T2 measurements using cardiac MR Fingerprinting (cMRF) by investigating and accounting for the effects of confounding factors including slice profile, inversion and T2 preparation pulse efficiency, and B1+. The goal is to understand how measurements with different pulse sequences are affected by these factors. This can be used to determine which factors must be taken into account for accurate measurements, and which may be mitigated by the selection of an appropriate pulse sequence. Simulations were performed using a numerical cardiac phantom to assess the accuracy of over 600 cMRF sequences with different flip angles, TRs, and preparation pulses. A subset of sequences, including one with the lowest errors in T1 and T2 maps, was used in subsequent analyses. Errors due to non-ideal slice profile, preparation pulse efficiency, and B1+ were quantified in Bloch simulations. Corrections for these effects were included in the dictionary generation and demonstrated in phantom and in vivo cardiac imaging at 3 T. Neglecting to model slice profile and preparation pulse efficiency led to underestimated T1 and overestimated T2 for most cMRF sequences. Sequences with smaller maximum flip angles were less affected by slice profile and B1+. Simulating all corrections in the dictionary improved the accuracy of T1 and T2 phantom measurements, regardless of acquisition pattern. More consistent myocardial T1 and T2 values were measured using different sequences after corrections. Based on these results, a pulse sequence which is minimally affected by confounding factors can be selected, and the appropriate residual corrections included for robust T1 and T2 mapping.


Subject(s)
Brain/diagnostic imaging , Heart Rate , Heart/diagnostic imaging , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Algorithms , Computer Simulation , Humans , Image Processing, Computer-Assisted , Models, Theoretical , Myocardium , Phantoms, Imaging
16.
NMR Biomed ; 31(6): e3923, 2018 06.
Article in English | MEDLINE | ID: mdl-29637637

ABSTRACT

The quantification of cardiac T1 relaxation time holds great potential for the detection of various cardiac diseases. However, as a result of both cardiac and respiratory motion, only one two-dimensional T1 map can be acquired in one breath-hold with most current techniques, which limits its application for whole heart evaluation in routine clinical practice. In this study, an electrocardiogram (ECG)-triggered three-dimensional Look-Locker method was developed for cardiac T1 measurement. Fast three-dimensional data acquisition was achieved with a spoiled gradient-echo sequence in combination with a stack-of-spirals trajectory and through-time non-Cartesian generalized autocalibrating partially parallel acquisition (GRAPPA) acceleration. The effects of different magnetic resonance parameters on T1 quantification with the proposed technique were first examined by simulating data acquisition and T1 map reconstruction using Bloch equation simulations. Accuracy was evaluated in studies with both phantoms and healthy subjects. These results showed that there was close agreement between the proposed technique and the reference method for a large range of T1 values in phantom experiments. In vivo studies further demonstrated that rapid cardiac T1 mapping for 12 three-dimensional partitions (spatial resolution, 2 × 2 × 8 mm3 ) could be achieved in a single breath-hold of ~12 s. The mean T1 values of myocardial tissue and blood obtained from normal volunteers at 3 T were 1311 ± 66 and 1890 ± 159 ms, respectively. In conclusion, a three-dimensional T1 mapping technique was developed using a non-Cartesian parallel imaging method, which enables fast and accurate T1 mapping of cardiac tissues in a single short breath-hold.


Subject(s)
Algorithms , Breath Holding , Heart/diagnostic imaging , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Adult , Computer Simulation , Extracellular Space/metabolism , Female , Humans , Male , Numerical Analysis, Computer-Assisted , Phantoms, Imaging
17.
Magn Reson Med ; 77(4): 1446-1458, 2017 04.
Article in English | MEDLINE | ID: mdl-27038043

ABSTRACT

PURPOSE: To introduce a two-dimensional MR fingerprinting (MRF) technique for quantification of T1 , T2 , and M0 in myocardium. METHODS: An electrocardiograph-triggered MRF method is introduced for mapping myocardial T1 , T2 , and M0 during a single breath-hold in as short as four heartbeats. The pulse sequence uses variable flip angles, repetition times, inversion recovery times, and T2 preparation dephasing times. A dictionary of possible signal evolutions is simulated for each scan that incorporates the subject's unique variations in heart rate. Aspects of the sequence design were explored in simulations, and the accuracy and precision of cardiac MRF were assessed in a phantom study. In vivo imaging was performed at 3 Tesla in 11 volunteers to generate native parametric maps. RESULTS: T1 and T2 measurements from the proposed cardiac MRF sequence correlated well with standard spin echo measurements in the phantom study (R2 > 0.99). A Bland-Altman analysis revealed good agreement for myocardial T1 measurements between MRF and MOLLI (bias 1 ms, 95% limits of agreement -72 to 72 ms) and T2 measurements between MRF and T2 -prepared balanced steady-state free precession (bias, -2.6 ms; 95% limits of agreement, -8.5 to 3.3 ms). CONCLUSION: MRF can provide quantitative single slice T1 , T2 , and M0 maps in the heart within a single breath-hold. Magn Reson Med 77:1446-1458, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Subject(s)
Algorithms , Cardiac Imaging Techniques/methods , Heart/anatomy & histology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Pattern Recognition, Automated/methods , Humans , Image Enhancement/methods , Protons , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted , Spin Labels
18.
J Cardiovasc Magn Reson ; 16: 65, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25231607

ABSTRACT

BACKGROUND: The standard clinical acquisition for left ventricular functional parameter analysis with cardiovascular magnetic resonance (CMR) uses a multi-breathhold multi-slice segmented balanced SSFP sequence. Performing multiple long breathholds in quick succession for ventricular coverage in the short-axis orientation can lead to fatigue and is challenging in patients with severe cardiac or respiratory disorders. This study combines the encoding efficiency of a six-fold undersampled 3D stack of spirals balanced SSFP sequence with 3D through-time spiral GRAPPA parallel imaging reconstruction. This 3D spiral method requires only one breathhold to collect the dynamic data. METHODS: Ten healthy volunteers were recruited for imaging at 3 T. The 3D spiral technique was compared against 2D imaging in terms of systolic left ventricular functional parameter values (Bland-Altman plots), total scan time (Welch's t-test) and qualitative image rating scores (Wilcoxon signed-rank test). RESULTS: Systolic left ventricular functional values were not significantly different (i.e. 3D-2D) between the methods. The 95% confidence interval for ejection fraction was -0.1 ± 1.6% (mean ± 1.96*SD). The total scan time for the 3D spiral technique was 48 s, which included one breathhold with an average duration of 14 s for the dynamic scan, plus 34 s to collect the calibration data under free-breathing conditions. The 2D method required an average of 5 min 40s for the same coverage of the left ventricle. The difference between 3D and 2D image rating scores was significantly different from zero (Wilcoxon signed-rank test, p < 0.05); however, the scores were at least 3 (i.e. average) or higher for 3D spiral imaging. CONCLUSION: The 3D through-time spiral GRAPPA method demonstrated equivalent systolic left ventricular functional parameter values, required significantly less total scan time and yielded acceptable image quality with respect to the 2D segmented multi-breathhold standard in this study. Moreover, the 3D spiral technique used just one breathhold for dynamic imaging, which is anticipated to reduce patient fatigue as part of the complete cardiac examination in future studies that include patients.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging, Cine/methods , Stroke Volume , Ventricular Function, Left , Breath Holding , Cardiac-Gated Imaging Techniques , Electrocardiography , Healthy Volunteers , Heart Rate , Humans , Predictive Value of Tests , Systole , Time Factors
19.
J Magn Reson Imaging ; 40(5): 1022-40, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24408499

ABSTRACT

Non-Cartesian parallel imaging has played an important role in reducing data acquisition time in MRI. The use of non-Cartesian trajectories can enable more efficient coverage of k-space, which can be leveraged to reduce scan times. These trajectories can be undersampled to achieve even faster scan times, but the resulting images may contain aliasing artifacts. Just as Cartesian parallel imaging can be used to reconstruct images from undersampled Cartesian data, non-Cartesian parallel imaging methods can mitigate aliasing artifacts by using additional spatial encoding information in the form of the nonhomogeneous sensitivities of multi-coil phased arrays. This review will begin with an overview of non-Cartesian k-space trajectories and their sampling properties, followed by an in-depth discussion of several selected non-Cartesian parallel imaging algorithms. Three representative non-Cartesian parallel imaging methods will be described, including Conjugate Gradient SENSE (CG SENSE), non-Cartesian generalized autocalibrating partially parallel acquisition (GRAPPA), and Iterative Self-Consistent Parallel Imaging Reconstruction (SPIRiT). After a discussion of these three techniques, several potential promising clinical applications of non-Cartesian parallel imaging will be covered.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Artifacts , Fourier Analysis , Humans , Pattern Recognition, Automated , Sensitivity and Specificity , Time Factors
20.
Theranostics ; 2(11): 1064-77, 2012.
Article in English | MEDLINE | ID: mdl-23227123

ABSTRACT

In situ forming implants (ISFIs) have shown promise in drug delivery applications due to their simple manufacturing and minimally invasive administration. Precise, reproducible control of drug release from ISFIs is essential to their successful clinical application. This study investigated the effect of varying the molar ratio of different molecular weight (Mw) poly(D,L-lactic-co-glycolic acid) (PLGA) polymers within a single implant on the release of a small Mw mock drug (sodium fluorescein) both in vitro and in vivo. Implants were formulated by dissolving three different PLGA Mw (15, 29, and 53 kDa), as well as three 1:1 molar ratio combinations of each PLGA Mw in 1-methyl-2-pyrrolidinone (NMP) with the mock drug fluorescein. Since implant morphology and microstructure during ISFI formation and degradation is a crucial determinant of implant performance, and the rate of phase inversion has been shown to have an effect on the implant microstructure, diagnostic ultrasound was used to noninvasively quantify the extent of phase inversion and swelling behavior in both environments. Implant erosion, degradation, as well as the in vitro and in vivo release profiles were also measured using standard techniques. A non-linear mathematical model was used to correlate the drug release behavior with polymer phase inversion, with all formulations yielding an R(2) value greater than 0.95. Ultrasound was also used to create a 3D image reconstruction of an implant over a 12 day span. In this study, swelling and phase inversion were shown to be inversely related to the polymer Mw with 53 kDa polymer implants increasing at an average rate of 9.4%/day compared with 18.6%/day in the case of the 15 kDa PLGA. Additionally the onset of erosion, complete phase inversion, and degradation facilitated release required 9 d for 53 kDa implants, while these same processes began 3 d after injection into PBS with the 15 kDa implants. It was also observed that PLGA blends generally had intermediate properties when compared to pure polymer formulations. However, release profiles from the blend formulations were governed by a more complex set of processes and were not simply averages of release profiles from the pure polymers preparations. This study demonstrated that implant properties such as phase inversion, swelling and drug release could be tailored to by altering the molar ratio of the polymers used in the depot formulation.


Subject(s)
Diagnostic Imaging/methods , Implants, Experimental , Lactic Acid/chemistry , Polyglycolic Acid/chemistry , Ultrasonics/methods , Animals , Fluorescein/metabolism , Imaging, Three-Dimensional , Male , Molecular Weight , Polylactic Acid-Polyglycolic Acid Copolymer , Rats , Rats, Sprague-Dawley , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...