Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(5): e0196223, 2018.
Article in English | MEDLINE | ID: mdl-29715265

ABSTRACT

Bhlhe40 is a transcription factor that is highly expressed in the hippocampus; however, its role in neuronal function is not well understood. Here, we used Bhlhe40 null mice on a congenic C57Bl6/J background (Bhlhe40 KO) to investigate the impact of Bhlhe40 on neuronal excitability and synaptic plasticity in the hippocampus. Bhlhe40 KO CA1 neurons had increased miniature excitatory post-synaptic current amplitude and decreased inhibitory post-synaptic current amplitude, indicating CA1 neuronal hyperexcitability. Increased CA1 neuronal excitability was not associated with increased seizure severity as Bhlhe40 KO relative to +/+ (WT) control mice injected with the convulsant kainic acid. However, significant reductions in long term potentiation and long term depression at CA1 synapses were observed in Bhlhe40 KO mice, indicating impaired hippocampal synaptic plasticity. Behavioral testing for spatial learning and memory on the Morris Water Maze (MWM) revealed that while Bhlhe40 KO mice performed similarly to WT controls initially, when the hidden platform was moved to the opposite quadrant Bhlhe40 KO mice showed impairments in relearning, consistent with decreased hippocampal synaptic plasticity. To investigate possible mechanisms for increased neuronal excitability and decreased synaptic plasticity, a whole genome mRNA expression profile of Bhlhe40 KO hippocampus was performed followed by a chromatin immunoprecipitation sequencing (ChIP-Seq) screen of the validated candidate genes for Bhlhe40 protein-DNA interactions consistent with transcriptional regulation. Of the validated genes identified from mRNA expression analysis, insulin degrading enzyme (Ide) had the most significantly altered expression in hippocampus and was significantly downregulated on the RNA and protein levels; although Bhlhe40 did not occupy the Ide gene by ChIP-Seq. Together, these findings support a role for Bhlhe40 in regulating neuronal excitability and synaptic plasticity in the hippocampus and that indirect regulation of Ide transcription may be involved in these phenotypes.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/physiology , Excitatory Postsynaptic Potentials/physiology , Hippocampus/physiopathology , Homeodomain Proteins/physiology , Neuronal Plasticity , Neurons/physiology , Seizures/physiopathology , Animals , Female , Gene Expression Profiling , Long-Term Potentiation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/cytology
2.
Brain Res ; 1671: 1-13, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28666957

ABSTRACT

Neural circuits in mammalian brains consist of large numbers of different cell types having different functional properties. To better understand the separate roles of individual neuron types in specific aspects of spatial learning and memory, we perturbed the function of principal neurons in vivo during maze performance or in hippocampal slices during recording of evoked excitatory synaptic potentials. Transgenic mice expressing the Drosophila allatostatin receptor (AlstR) in cortical and hippocampal pyramidal cells were tested on an elevated plus maze, in a Y-maze, and in the Morris water maze. Relative to a control cohort, AlstR-positive mice treated with allatostatin exhibited no difference in open arm dwell time on the elevated plus maze or total number of arm entries in a Y-maze, but displayed reduced spontaneous alternation. When animals received massed or spaced training trials in the Morris water maze, and the peptide was delivered prior to an immediate probe, no effects on performance were observed. When the peptide was delivered during a probe trial performed 24h after seven days of spaced training, allatostatin delivery to AlstR positive mice enhanced direct navigation to the escape platform. Combined, these results suggest that cortical and hippocampal pyramidal neurons are required during spatial decision-making in a novel environment and compete with other neural systems after extended training in a long-term reference memory task. In hippocampal slices collected from AlstR positive animals, allatostatin delivery produced frequency dependent alterations in the Schaffer collateral fiber volley (attenuated accommodation at 100Hz) and excitatory postsynaptic potential (attenuated facilitation at 5Hz). Combined, the neural and behavioral discoveries support the involvement of short-term plasticity of Schaffer collateral axons and synapses during exploration of a novel environment and during initial orientation to a goal in a well-learned setting.


Subject(s)
Drosophila Proteins/metabolism , Drosophila Proteins/physiology , Learning/physiology , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/physiology , Receptors, Neuropeptide/metabolism , Receptors, Neuropeptide/physiology , Spatial Memory/physiology , Animals , Axons/physiology , Drosophila/anatomy & histology , Drosophila/metabolism , Excitatory Postsynaptic Potentials , Hippocampus/metabolism , Hippocampus/physiology , Maze Learning/physiology , Memory/physiology , Memory, Long-Term/physiology , Mice , Mice, Transgenic , Neurons/physiology , Neuropeptides/metabolism , Neuropeptides/physiology , Prosencephalon/metabolism , Prosencephalon/physiology , Pyramidal Cells/physiology , Synaptic Transmission/physiology
3.
Pharm Res ; 31(12): 3445-60, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24980206

ABSTRACT

PURPOSE: To develop a tool based on siRNA-mediated knockdown of hepatic P450 oxidoreductase (POR) to decrease the CYP-mediated metabolism of small molecule drugs that suffer from rapid metabolism in vivo, with the aim of improving plasma exposure of these drugs. METHODS: siRNA against the POR gene was delivered using lipid nanoparticles (LNPs) into rats. The time course of POR mRNA knockdown, POR protein knockdown, and loss of POR enzyme activity was monitored. The rat livers were harvested to produce microsomes to determine the impact of POR knockdown on the metabolism of several probe substrates. Midazolam (a CYP3A substrate with high intrinsic clearance) was administered into LNP-treated rats to determine the impact of POR knockdown on midazolam pharmacokinetics. RESULTS: Hepatic POR mRNA and protein levels were significantly reduced by administering siRNA and the maximum POR enzyme activity reduction (~85%) occurred 2 weeks post-dose. In vitro analysis showed significant reductions in metabolism of probe substrates due to POR knockdown in liver, and in vivo POR knockdown resulted in greater than 10-fold increases in midazolam plasma concentrations following oral dosing. CONCLUSIONS: Anti-POR siRNA can be used to significantly reduce hepatic metabolism by various CYPs as well as greatly increase the bioavailability of high clearance compounds following an oral dose, thus enabling it to be used as a tool to increase drug exposure in vivo.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Gene Knockdown Techniques/methods , RNA, Small Interfering/pharmacology , Animals , Chemistry, Pharmaceutical , Diclofenac/metabolism , In Vitro Techniques , Male , Microsomes/drug effects , Microsomes/enzymology , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Midazolam/metabolism , Nanoparticles , Protein Binding , Rats
4.
Front Neurosci ; 6: 49, 2012.
Article in English | MEDLINE | ID: mdl-22536169

ABSTRACT

The importance of neuronal morphology has been recognized from the early days of neuroscience. Elucidating the functional roles of axonal and dendritic arbors in synaptic integration, signal transmission, network connectivity, and circuit dynamics requires quantitative analyses of digital three-dimensional reconstructions. We extensively searched the scientific literature for all original reports describing reconstructions of neuronal morphology since the advent of this technique three decades ago. From almost 50,000 titles, 30,000 abstracts, and more than 10,000 full-text articles, we identified 902 publications describing ∼44,000 digital reconstructions. Reviewing the growth of this field exposed general research trends on specific animal species, brain regions, neuron types, and experimental approaches. The entire bibliography, annotated with relevant metadata and (wherever available) direct links to the underlying digital data, is accessible at NeuroMorpho.Org.

5.
Arch Biochem Biophys ; 484(1): 1-7, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19467625

ABSTRACT

A number of inhibitors of kinesin spindle protein (KSP) have been described, which are known from X-ray crystallography studies to bind to an induced fit pocket defined by the L5 loop. We describe the characterization of eight mutant forms of KSP in which six residues that line this pocket have been altered. Mutants were analyzed by measuring rates of enzyme catalysis, in the presence and absence of six KSP inhibitors of four diverse structural classes and of varied ATP-competition status. Our analysis was in agreement with the model of binding established by the structural studies and suggests that binding energy is well distributed across functional groups in these molecules. The majority of the mutants retained significant enzymatic activity while diminishing inhibitor binding, indicating potential for the development of drug resistance. These data provide detailed information on interactions between inhibitor and binding pocket at the functional group level and enable the development of novel KSP inhibitors.


Subject(s)
Kinesins/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Binding, Competitive , Biocatalysis , Crystallography, X-Ray , Humans , Kinesins/chemistry , Kinesins/genetics , Kinesins/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Conformation , Sequence Homology, Amino Acid
6.
Bioorg Med Chem Lett ; 17(22): 6280-5, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-17900896

ABSTRACT

From HTS lead 1, a novel benzoisoquinolinone class of ATP-competitive Chk1 inhibitors was devised and synthesized via a photochemical route. Using X-ray crystallography as a guide, potency was rapidly enhanced through the installation of a tethered basic amine designed to interact with an acidic residue (Glu91) in the enzyme pocket. Further SAR was explored at the solvent front and near to the H1 pocket and resulted in the discovery of low MW, sub-nanomolar inhibitors of Chk1.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Protein Kinases/drug effects , Quinolones/chemical synthesis , Quinolones/pharmacology , Apoptosis/drug effects , Binding Sites , Cell Line, Tumor , Checkpoint Kinase 1 , Crystallography, X-Ray , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Humans , Inhibitory Concentration 50 , Models, Molecular , Molecular Structure , Photochemistry , Protein Kinases/chemistry , Quinolones/chemistry , Structure-Activity Relationship
7.
J Med Chem ; 46(14): 2973-84, 2003 Jul 03.
Article in English | MEDLINE | ID: mdl-12825937

ABSTRACT

A series of novel diaryl ether lactams have been identified as very potent dual inhibitors of protein farnesyltransferase (FTase) and protein geranylgeranyltransferase I (GGTase-I), enzymes involved in the prenylation of Ras. The structure of the complex formed between one of these compounds and FTase has been determined by X-ray crystallography. These compounds are the first reported to inhibit the prenylation of the important oncogene Ki-Ras4B in vivo. Unfortunately, doses sufficient to achieve this endpoint were rapidly lethal.


Subject(s)
Alkyl and Aryl Transferases/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Carrier Proteins/metabolism , Crystallography, X-Ray , Drug Screening Assays, Antitumor , HSP40 Heat-Shock Proteins , Heat-Shock Proteins/metabolism , Humans , Mice , Mice, Nude , Models, Molecular , Neoplasm Transplantation , Neoplasms, Experimental/drug therapy , Protein Prenylation , Structure-Activity Relationship , Transplantation, Heterologous , Tumor Cells, Cultured , rap1 GTP-Binding Proteins/metabolism , ras Proteins/metabolism
8.
J Med Chem ; 45(12): 2388-409, 2002 Jun 06.
Article in English | MEDLINE | ID: mdl-12036349

ABSTRACT

A series of macrocyclic 3-aminopyrrolidinone farnesyltransferase inhibitors (FTIs) has been synthesized. Compared with previously described linear 3-aminopyrrolidinone FTIs such as compound 1, macrocycles such as 49 combined improved pharmacokinetic properties with a reduced potential for side effects. In dogs, oral bioavailability was good to excellent, and increases in plasma half-life were due to attenuated clearance. It was observed that in vivo clearance correlated with the flexibility of the molecules and this concept proved useful in the design of FTIs that exhibited low clearance, such as FTI 78. X-ray crystal structures of compounds 49 and 66 complexed with farnesyltransferase (FTase)-farnesyl diphosphate (FPP) were determined, and they provide details of the key interactions in such ternary complexes. Optimization of this 3-aminopyrrolidinone series of compounds led to significant increases in potency, providing 83 and 85, the most potent inhibitors of FTase in cells described to date.


Subject(s)
Alkyl and Aryl Transferases/antagonists & inhibitors , Aryl Hydrocarbon Hydroxylases , Cation Transport Proteins , DNA-Binding Proteins , Enzyme Inhibitors/chemical synthesis , Naphthalenes/chemical synthesis , Potassium Channels, Voltage-Gated , Pyrrolidines/chemical synthesis , Trans-Activators , Animals , Cell Line , Chromatography, Liquid , Crystallography, X-Ray , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme Inhibitors , Dogs , ERG1 Potassium Channel , Electrocardiography , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Ether-A-Go-Go Potassium Channels , Farnesyltranstransferase , Humans , In Vitro Techniques , Magnetic Resonance Spectroscopy , Mass Spectrometry , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Models, Molecular , Molecular Structure , Naphthalenes/chemistry , Naphthalenes/pharmacokinetics , Oxidoreductases, N-Demethylating/antagonists & inhibitors , Potassium Channels/metabolism , Protein Binding , Pyrrolidines/chemistry , Pyrrolidines/pharmacokinetics , Stereoisomerism , Structure-Activity Relationship , Transcriptional Regulator ERG
SELECTION OF CITATIONS
SEARCH DETAIL
...