Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxics ; 12(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38393201

ABSTRACT

Perfluorooctanesulfonate (PFOS) is a widespread environmental pollutant with a long half-life and clearly negative outcomes on metabolic diseases such as fatty liver disease and diabetes. Male and female Cyp2b-null and humanized CYP2B6-transgenic (hCYP2B6-Tg) mice were treated with 0, 1, or 10 mg/kg/day PFOS for 21 days, and surprisingly it was found that PFOS was retained at greater concentrations in the serum and liver of hCYP2B6-Tg mice than those of Cyp2b-null mice, with greater differences in the females. Thus, Cyp2b-null and hCYP2B6-Tg mice provide new models for investigating individual mechanisms for PFOS bioaccumulation and toxicity. Overt toxicity was greater in hCYP2B6-Tg mice (especially females) as measured by mortality; however, steatosis occurred more readily in Cyp2b-null mice despite the lower PFOS liver concentrations. Targeted lipidomics and transcriptomics from PFOS-treated Cyp2b-null and hCYP2B6-Tg mouse livers were performed and compared to PFOS retention and serum markers of toxicity using PCA. Several oxylipins, including prostaglandins, thromboxanes, and docosahexaenoic acid metabolites, are associated or inversely associated with PFOS toxicity. Both lipidomics and transcriptomics indicate PFOS toxicity is associated with PPAR activity in all models. GO terms associated with reduced steatosis were sexually dimorphic with lipid metabolism and transport increased in females and circadian rhythm associated genes increased in males. However, we cannot rule out that steatosis was initially protective from PFOS toxicity. Moreover, several transporters are associated with increased retention, probably due to increased uptake. The strongest associations are the organic anion transport proteins (Oatp1a4-6) genes and a long-chain fatty acid transport protein (fatp1), enriched in female hCYP2B6-Tg mice. PFOS uptake was also reduced in cultured murine hepatocytes by OATP inhibitors. The role of OATP1A6 and FATP1 in PFOS transport has not been tested. In summary, Cyp2b-null and hCYP2B6-Tg mice provided unique models for estimating the importance of novel mechanisms in PFOS retention and toxicity.

2.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-36751104

ABSTRACT

Red clover produces isoflavones, including biochanin A, which have been shown to have microbiological effects on the rumen while also promoting growth in beef cattle. The objective was to determine if supplementation of biochanin A via red clover hay would produce similar effects on the rumen microbiota and improve growth performance of lambs. Twenty-four individually-housed Polypay ram lambs (initial age: 114 ± 1 d; initial weight: 38.1 ± 0.59 kg) were randomly assigned to one of three experimental diets (85:15 concentrate:roughage ratio; N = 8 rams/treatment): CON-control diet in which the roughage component (15.0%, w/w, of the total diet) consisted of orchardgrass hay; 7.5-RC-red clover hay substituted for half (7.5%, w/w, of the total diet) of the roughage component; and 15-RC-the entire roughage component (15.0%, w/w, of the total diet) consisted of red clover hay. Feed intake and weight gain were measured at 14-d intervals for the duration of the 56-d trial, and rumen microbiological measures were assessed on days 0, 28, and 56. Red clover supplementation impacted growth performance of ram lambs. Average daily gains (ADG) were greater in ram lambs supplemented with red clover hay (7.5-RC and 15-RC) than for those fed the CON diet (P < 0.05). Conversely, dry matter intake (DMI) was lower in 7.5-RC and 15-RC than for CON lambs (P = 0.03). Differences in ADG and DMI resulted in greater feed efficiency in ram lambs supplemented with red clover hay (both 7.5-RC and 15-RC) compared to CON (P < 0.01). Rumen microbiota were also altered by red clover supplementation. The total viable number of hyper-ammonia-producing bacteria in 7.5-RC and 15-RC decreased over the course of the experiment and were lower than CON by day 28 (P ≤ 0.04). Amylolytic bacteria were also lower in 15-RC than in CON (P = 0.03), with a trend for lower amylolytic bacteria in 7.5-RC (P = 0.08). In contrast, there was tendency for greater cellulolytic bacteria in red clover supplemented lambs than in CON (P = 0.06). Red clover supplementation also increased fiber utilization, with greater ex vivo dry matter digestibility of hay for both 7.5-RC and 15-RC compared to CON by day 28 (P < 0.03). Results of this study indicate that low levels of red clover hay can elicit production benefits in high-concentrate lamb finishing systems through alteration of the rumen microbiota.


Red clover is rich in the bioactive isoflavone, biochanin A. The goal was to evaluate the impacts of biochanin A supplementation via red clover hay on growth performance of ram lambs as well as the rumen microbiota and fermentation. Low levels of red clover hay inclusion (7.5% and 15.0%, w/w, of the total diet) in high-concentrate finishing diets improved feed efficiency of ram lambs, promoting weight gain while decreasing feed intake. Red clover hay supplementation suppressed ruminal protein-wasting, peptide- and amino-acid degrading and starch-utilizing bacteria compared to control diets without isoflavones. Red clover hay also promoted fiber degrading bacteria and fiber utilization. Lamb growth and microbiological effects of red clover were consistent regardless of supplementation level in the diet. Results of this study indicate that low levels of red clover hay can produce production benefits in lamb finishing systems and demonstrated the efficacy of red clover as a functional feed, or feed with biological activities, in the context of its traditional use as a forage feedstuff.


Subject(s)
Rumen , Trifolium , Cattle , Sheep , Animals , Male , Rumen/metabolism , Animal Feed/analysis , Fermentation , Diet/veterinary , Dietary Supplements , Sheep, Domestic , Dietary Fiber/metabolism , Digestion
3.
Food Chem Toxicol ; 152: 112175, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33838175

ABSTRACT

PFOS is a persistent, fluorosurfactant used in multiple products. Murine Cyp2b's are induced by PFOS and high-fat diets (HFD) and therefore we hypothesized that human CYP2B6 may alleviate PFOS-induced steatosis. Cyp2b-null and hCYP2B6-Tg mice were treated with 0, 1, or 10 mg/kg/day PFOS by oral gavage for 21-days while provided a chow diet (ND) or HFD. Similar to murine Cyp2b10, CYP2B6 is inducible by PFOS. Furthermore, three ND-fed hCYP2B6-Tg females treated with 10 mg/kg/day PFOS died during the exposure period; neither Cyp2b-null nor HFD-fed mice died. hCYP2B6-Tg mice retained more PFOS in serum and liver than Cyp2b-null mice presumably causing the observed toxicity. In contrast, serum PFOS retention was reduced in the HFD-fed hCYP2B6-Tg mice; the opposite trend observed in HFD-fed Cyp2b-null mice. Hepatotoxicity biomarkers, ALT and ALP, were higher in PFOS-treated mice and repressed by a HFD. However, PFOS combined with a HFD exacerbated steatosis in all mice, especially in the hCYP2B6-Tg mice with significant disruption of key lipid metabolism genes such as Srebp1, Pparg, and Hmgcr. In conclusion, CYP2B6 is induced by PFOS but does not alleviate PFOS toxicity presumably due to increased retention. CYP2B6 protects from PFOS-mediated steatosis in ND-fed mice, but increases steatosis when co-treated with a HFD.


Subject(s)
Alkanesulfonic Acids/toxicity , Cytochrome P-450 CYP2B6/metabolism , Diet, High-Fat , Fluorocarbons/toxicity , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Animals , Cytochrome P-450 CYP2B6/genetics , Female , Gene Expression/drug effects , Humans , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Mice, Transgenic , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/pathology , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...