Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Med ; 12(9): e1001880, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26418737

ABSTRACT

BACKGROUND: The continued advance of antibiotic resistance threatens the treatment and control of many infectious diseases. This is exemplified by the largest global outbreak of extensively drug-resistant (XDR) tuberculosis (TB) identified in Tugela Ferry, KwaZulu-Natal, South Africa, in 2005 that continues today. It is unclear whether the emergence of XDR-TB in KwaZulu-Natal was due to recent inadequacies in TB control in conjunction with HIV or other factors. Understanding the origins of drug resistance in this fatal outbreak of XDR will inform the control and prevention of drug-resistant TB in other settings. In this study, we used whole genome sequencing and dating analysis to determine if XDR-TB had emerged recently or had ancient antecedents. METHODS AND FINDINGS: We performed whole genome sequencing and drug susceptibility testing on 337 clinical isolates of Mycobacterium tuberculosis collected in KwaZulu-Natal from 2008 to 2013, in addition to three historical isolates, collected from patients in the same province and including an isolate from the 2005 Tugela Ferry XDR outbreak, a multidrug-resistant (MDR) isolate from 1994, and a pansusceptible isolate from 1995. We utilized an array of whole genome comparative techniques to assess the relatedness among strains, to establish the order of acquisition of drug resistance mutations, including the timing of acquisitions leading to XDR-TB in the LAM4 spoligotype, and to calculate the number of independent evolutionary emergences of MDR and XDR. Our sequencing and analysis revealed a 50-member clone of XDR M. tuberculosis that was highly related to the Tugela Ferry XDR outbreak strain. We estimated that mutations conferring isoniazid and streptomycin resistance in this clone were acquired 50 y prior to the Tugela Ferry outbreak (katG S315T [isoniazid]; gidB 130 bp deletion [streptomycin]; 1957 [95% highest posterior density (HPD): 1937-1971]), with the subsequent emergence of MDR and XDR occurring 20 y (rpoB L452P [rifampicin]; pncA 1 bp insertion [pyrazinamide]; 1984 [95% HPD: 1974-1992]) and 10 y (rpoB D435G [rifampicin]; rrs 1400 [kanamycin]; gyrA A90V [ofloxacin]; 1995 [95% HPD: 1988-1999]) prior to the outbreak, respectively. We observed frequent de novo evolution of MDR and XDR, with 56 and nine independent evolutionary events, respectively. Isoniazid resistance evolved before rifampicin resistance 46 times, whereas rifampicin resistance evolved prior to isoniazid only twice. We identified additional putative compensatory mutations to rifampicin in this dataset. One major limitation of this study is that the conclusions with respect to ordering and timing of acquisition of mutations may not represent universal patterns of drug resistance emergence in other areas of the globe. CONCLUSIONS: In the first whole genome-based analysis of the emergence of drug resistance among clinical isolates of M. tuberculosis, we show that the ancestral precursor of the LAM4 XDR outbreak strain in Tugela Ferry gained mutations to first-line drugs at the beginning of the antibiotic era. Subsequent accumulation of stepwise resistance mutations, occurring over decades and prior to the explosion of HIV in this region, yielded MDR and XDR, permitting the emergence of compensatory mutations. Our results suggest that drug-resistant strains circulating today reflect not only vulnerabilities of current TB control efforts but also those that date back 50 y. In drug-resistant TB, isoniazid resistance was overwhelmingly the initial resistance mutation to be acquired, which would not be detected by current rapid molecular diagnostics employed in South Africa that assess only rifampicin resistance.


Subject(s)
Antitubercular Agents/pharmacology , Extensively Drug-Resistant Tuberculosis/genetics , Genome, Bacterial , Mycobacterium tuberculosis/genetics , Adult , Disease Outbreaks , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/epidemiology , Female , Humans , Male , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Sequence Analysis, DNA , South Africa/epidemiology
2.
Br J Haematol ; 145(1): 59-63, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19220283

ABSTRACT

Waldenstrom Macroglobulinemia (WM) is a B-cell malignancy characterized by excess bone marrow (BM) lymphoplasmacytic cells (LPC). The accumulation of LPC in WM may represent a failure of B-cells to properly differentiate into plasma cells. The present study investigated transcriptional expression of genes involved in late B-cell differentiation, including PRDM1, PAX5, XBP1 transcripts and ERN1, in BM B-cells from 31 patients with WM and six healthy donors. Real time reverse transcription polymerase chain reaction (RT-PCR) determined that approximately 80% of the patients had high XBP1 spliced mRNA expression, 80% of whom had high mRNA ERN1alpha expression. XBP1, PRDM1 and PAX5 mRNA was present in all patients studied. Using relative quantitative RT-PCR we isolated two groups with low and high expression of XBP1, XBP1 spliced and ERN1alpha. Sequence analysis showed germline polymorphisms in all genes studied. These data depict for the first time a heterogeneous expression pattern of the genes involved in late differentiation process of plasma cells in patients with WM and propose a role of XBP1-ERN1alpha in WM pathogenesis.


Subject(s)
B-Lymphocytes/metabolism , Genes, Regulator , Plasma Cells/metabolism , Waldenstrom Macroglobulinemia/genetics , Adult , Aged , Aged, 80 and over , B-Lymphocytes/pathology , Case-Control Studies , Cell Differentiation/genetics , Electrophoresis, Capillary , Female , Gene Expression , Humans , Male , Middle Aged , Plasma Cells/pathology , Reverse Transcriptase Polymerase Chain Reaction/methods , Sequence Analysis, DNA , Statistics, Nonparametric , Waldenstrom Macroglobulinemia/pathology
3.
Immun Ageing ; 1(1): 6, 2004 Nov 12.
Article in English | MEDLINE | ID: mdl-15679925

ABSTRACT

In the recent years, several cytokines have been associated with Alzheimer's disease (AD) development and progression and many studies have correlated this risk with polymorphisms in the genes encoding these molecules. Also the type 1 cytokine interferon (IFN)-gamma belongs to a cytokine class that affects the immune function; in fact it plays a major role in defence against viruses and intracellular pathogens but also in the induction of the immune-mediated inflammatory response. The aim of this study was to evaluate the role of IFN-gamma in AD by studying the association of +874T-->A IFN-gamma gene polymorphism with AD. We included in this study 115 AD patients (70 women, 45 men, mean age 80) and 90 sex and age-matched healthy controls (HC, 51 women, 39 men, mean age 82) from northern Italy. Genomic DNA was extracted with the salting-out method from whole blood of all subjects; the genotyping at IFN-gamma loci was assessed with ARMS-PCR. The data obtained from the +874T-->A IFN-gamma gene polymorphism analysis of AD patients and HC lack of any statistically significant differences also when stratified according to gender. In conclusion these results confirm the previous shown lack of association between +874T-->A IFN-gamma gene polymorphism and the risk of AD. However, other polymorphisms have been demonstrated to influence IFN-gamma transcription and since natural killer cells of AD patients show higher production of the cytokine, further analysis will be necessary to clarify the role of this gene in the pathogenesis of the disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...