Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 4129, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840594

ABSTRACT

A critical challenge during volcanic emergencies is responding to rapid changes in eruptive behaviour. Actionable advice, essential in times of rising uncertainty, demands the rapid synthesis and communication of multiple datasets with prognoses. The 2020-2021 eruption of La Soufrière volcano exemplifies these challenges: a series of explosions from 9-22 April 2021 was preceded by three months of effusive activity, which commenced with a remarkably low level of detected unrest. Here we show how the development of an evolving conceptual model, and the expression of uncertainties via both elicitation and scenarios associated with this model, were key to anticipating this transition. This not only required input from multiple monitoring datasets but contextualisation via state-of-the-art hazard assessments, and evidence-based knowledge of critical decision-making timescales and community needs. In addition, we share strategies employed as a consequence of constraints on recognising and responding to eruptive transitions in a resource-constrained setting, which may guide similarly challenged volcano observatories worldwide.


Subject(s)
Disasters , Volcanic Eruptions
2.
Sci Adv ; 6(14): eaaz5261, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32284984

ABSTRACT

Observations indicate a strong correlation between the occurrence of volcanic eruptions and earthquakes. While increased volcanic activity has been observed following both local and distal earthquakes, some of the largest recorded earthquakes aren't known to have triggered an eruption. Here we investigate whether an eruption and associated dike intrusion at Ambrym volcano was triggered by an M w 6.4 earthquake which occurred 30 hours earlier. Modeling suggests that stress changes induced by the earthquake were too small to account for the overpressure in the dike without additional bubble growth to pressurize the magma chamber. We find that the magma must be both H2O-saturated and at lower temperatures than those expected for newly intruded basalts. Too hot and the stress drop required to grow the bubbles is too large, too cold and the magma can no longer flow. These observations suggest that partially cooled and crystallized basaltic magmas are more susceptible to triggering from earthquakes.

3.
Sci Adv ; 5(10): eaax5703, 2019 10.
Article in English | MEDLINE | ID: mdl-31616791

ABSTRACT

A key paradigm in seismology is that earthquakes release elastic strain energy accumulated during an interseismic period on approximately planar faults. Earthquake slip models may be further informed by empirical relations such as slip to length. Here, we use differential lidar to demonstrate that the Papatea fault-a key element within the 2016 Mw 7.8 Kaikoura earthquake rupture-has a distinctly nonplanar geometry, far exceeded typical coseismic slip-to-length ratios, and defied Andersonian mechanics by slipping vertically at steep angles. Additionally, its surface deformation is poorly reproduced by elastic dislocation models, suggesting the Papatea fault did not release stored strain energy as typically assumed, perhaps explaining its seismic quiescence in back-projections. Instead, it slipped in response to neighboring fault movements, creating a localized space problem, accounting for its anelastic deformation field. Thus, modeling complex, multiple-fault earthquakes as slip on planar faults embedded in an elastic medium may not always be appropriate.

SELECTION OF CITATIONS
SEARCH DETAIL
...