Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Cent Sci ; 10(5): 1044-1053, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38799653

ABSTRACT

The programmed synthesis of sequence-defined biomaterials whose monomer backbones diverge from those of canonical α-amino acids represents the next frontier in protein and biomaterial evolution. Such next-generation molecules provide otherwise nonexistent opportunities to develop improved biologic therapies, bioremediation tools, and biodegradable plastic-like materials. One monomer family of particular interest for biomaterials includes ß-hydroxy acids. Many natural products contain isolated ß-hydroxy acid monomers, and polymers of ß-hydroxy acids (ß-esters) are found in polyhydroxyalkanoate (PHA) polyesters under development as bioplastics and drug encapsulation/delivery systems. Here we report that ß2-hydroxy acids possessing both (R) and (S) absolute configuration are substrates for pyrrolysyl-tRNA synthetase (PylRS) enzymes in vitro and that (S)-ß2-hydroxy acids are substrates in cellulo. Using the orthogonal MaPylRS/MatRNAPyl synthetase/tRNA pair, in conjunction with wild-type E. coli ribosomes and EF-Tu, we report the cellular synthesis of model proteins containing two (S)-ß2-hydroxy acid residues at internal positions. Metadynamics simulations provide a rationale for the observed preference for the (S)-ß2-hydroxy acid and provide mechanistic insights that inform future engineering efforts. As far as we know, this finding represents the first example of an orthogonal synthetase that acylates tRNA with a ß2-hydroxy acid substrate and the first example of a protein hetero-oligomer containing multiple expanded-backbone monomers produced in cellulo.

2.
Nat Chem ; 15(7): 960-971, 2023 07.
Article in English | MEDLINE | ID: mdl-37264106

ABSTRACT

The absence of orthogonal aminoacyl-transfer RNA (tRNA) synthetases that accept non-L-α-amino acids is a primary bottleneck hindering the in vivo translation of sequence-defined hetero-oligomers and biomaterials. Here we report that pyrrolysyl-tRNA synthetase (PylRS) and certain PylRS variants accept α-hydroxy, α-thio and N-formyl-L-α-amino acids, as well as α-carboxy acid monomers that are precursors to polyketide natural products. These monomers are accommodated and accepted by the translation apparatus in vitro; those with reactive nucleophiles are incorporated into proteins in vivo. High-resolution structural analysis of the complex formed between one PylRS enzyme and a m-substituted 2-benzylmalonic acid derivative revealed an active site that discriminates prochiral carboxylates and accommodates the large size and distinct electrostatics of an α-carboxy substituent. This work emphasizes the potential of PylRS-derived enzymes for acylating tRNA with monomers whose α-substituent diverges substantially from the α-amine of proteinogenic amino acids. These enzymes or derivatives thereof could synergize with natural or evolved ribosomes and/or translation factors to generate diverse sequence-defined non-protein heteropolymers.


Subject(s)
Amino Acyl-tRNA Synthetases , Amino Acyl-tRNA Synthetases/genetics , Lysine/chemistry , Amino Acids , RNA, Transfer/genetics
3.
ACS Cent Sci ; 8(7): 955-962, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35912347

ABSTRACT

A convenient enzymatic strategy is reported for the modification of cell surfaces. Using a tyrosinase enzyme isolated from Agaricus bisporus, unique tyrosine residues introduced at the C-termini of nanobodies can be site-selectively oxidized to reactive o-quinones. These reactive intermediates undergo rapid modification with nucleophilic thiol, amine, and imidazole residues present on cell surfaces, producing novel nanobody-cell conjugates that display targeted antigen binding. We extend this approach toward the synthesis of nanobody-NK cell conjugates for targeted immunotherapy applications. The resulting NK cell conjugates exhibit targeted cell binding and elicit targeted cell death.

4.
ACS Cent Sci ; 8(4): 473-482, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35505866

ABSTRACT

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are peptide-derived natural products with potent antibiotic, antiviral, and anticancer properties. RiPP enzymes known as cyclodehydratases and dehydrogenases work together to catalyze intramolecular, inter-residue condensation and dehydrogenation reactions that install oxazoline/oxazole and thiazoline/thiazole heterocycles within ribosomally produced polypeptide chains. Here, we show that the previously reported enzymes MicD-F and ArtGox accept backbone-modified monomers-including aminobenzoic acid derivatives and beta-amino acids-within leader-free polypeptides, even at positions immediately preceding or following the site of cyclization/dehydrogenation. The products are sequence-defined chemical polymers with multiple, diverse non-α-amino acid subunits. We show further that MicD-F and ArtGox can install heterocyclic backbones within protein loops and linkers without disrupting the native tertiary fold. Calculations reveal the extent to which these heterocycles restrict conformational space; they also eliminate a peptide bond-both features could improve the stability or add function to linker sequences now commonplace in emerging biotherapeutics. This work represents a general strategy to expand the chemical diversity of the proteome beyond and in synergy with what can now be accomplished by expanding the genetic code.

5.
Genes Dev ; 36(3-4): 149-166, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35115380

ABSTRACT

The process of tissue regeneration occurs in a developmentally timed manner, yet the role of circadian timing is not understood. Here, we identify a role for the adult muscle stem cell (MuSC)-autonomous clock in the control of muscle regeneration following acute ischemic injury. We observed greater muscle repair capacity following injury during the active/wake period as compared with the inactive/rest period in mice, and loss of Bmal1 within MuSCs leads to impaired muscle regeneration. We demonstrate that Bmal1 loss in MuSCs leads to reduced activated MuSC number at day 3 postinjury, indicating a failure to properly expand the myogenic precursor pool. In cultured primary myoblasts, we observed that loss of Bmal1 impairs cell proliferation in hypoxia (a condition that occurs in the first 1-3 d following tissue injury in vivo), as well as subsequent myofiber differentiation. Loss of Bmal1 in both cultured myoblasts and in vivo activated MuSCs leads to reduced glycolysis and premature activation of prodifferentiation gene transcription and epigenetic remodeling. Finally, hypoxic cell proliferation and myofiber formation in Bmal1-deficient myoblasts are restored by increasing cytosolic NAD+ Together, we identify the MuSC clock as a pivotal regulator of oxygen-dependent myoblast cell fate and muscle repair through the control of the NAD+-driven response to injury.


Subject(s)
ARNTL Transcription Factors , NAD , Satellite Cells, Skeletal Muscle , ARNTL Transcription Factors/genetics , Animals , Cell Differentiation/genetics , Hypoxia , Mice , Muscle Development/genetics , Muscle, Skeletal , Myoblasts
SELECTION OF CITATIONS
SEARCH DETAIL
...