Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Schizophr Res ; 261: 161-169, 2023 11.
Article in English | MEDLINE | ID: mdl-37776647

ABSTRACT

Event-related potentials (ERPs) during oddball tasks and the behavioral performance on the Penn Conditional Exclusion Task (PCET) measure context-appropriate responding: P300 ERPs to oddball targets reflect detection of input changes and context updating in working memory, and PCET performance indexes detection, adherence, and maintenance of mental set changes. More specifically, PCET variables quantify cognitive functions including inductive reasoning (set 1 completion), mental flexibility (perseverative errors), and working memory maintenance (regressive errors). Past research showed that both P300 ERPs and PCET performance are disrupted in psychosis. This study probed the possible neural correlates of 3 PCET abnormalities that occur in participants with psychosis via the overlapping cognitive demands of the two study paradigms. In a two-tiered analysis, psychosis (n = 492) and healthy participants (n = 244) were first divided based on completion of set 1 - which measures subjects' ability to use inductive reasoning to arrive at the correct set. Results showed that participants who failed set 1 produced lower parietal P300, independent of clinical status. In the second tier of analysis, a double dissociation was found among healthy set 1 completers: frontal P300 amplitudes were negatively associated with perseverative errors, and parietal P300 was negatively associated with regressive errors. In contrast, psychosis participants showed global P300 reductions regardless of PCET performance. From this we conclude that in psychosis, overall activations evoked by the oddball task are reduced while the cognitive functions required by PCET are still somewhat supported, showing some level of independence or compensatory physiology in psychosis between neural activities underlying the two tasks.


Subject(s)
Event-Related Potentials, P300 , Psychotic Disorders , Humans , Event-Related Potentials, P300/physiology , Electroencephalography/methods , Psychotic Disorders/psychology , Evoked Potentials/physiology , Cognition
2.
Cell Rep ; 42(9): 113133, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37708021

ABSTRACT

Visual stimuli that deviate from the current context elicit augmented responses in the primary visual cortex (V1). These heightened responses, known as "deviance detection," require local inhibition in the V1 and top-down input from the anterior cingulate area (ACa). Here, we investigated the mechanisms by which the ACa and V1 interact to support deviance detection. Local field potential recordings in mice during an oddball paradigm showed that ACa-V1 synchrony peaks in the theta/alpha band (≈10 Hz). Two-photon imaging in the V1 revealed that mainly pyramidal neurons exhibited deviance detection, while contextually redundant stimuli increased vasoactive intestinal peptide (VIP)-positive interneuron (VIP) activity and decreased somatostatin-positive interneuron (SST) activity. Optogenetic drive of ACa-V1 inputs at 10 Hz activated V1-VIPs but inhibited V1-SSTs, mirroring the dynamics present during the oddball paradigm. Chemogenetic inhibition of V1-VIPs disrupted Aca-V1 synchrony and deviance detection in the V1. These results outline temporal and interneuron-specific mechanisms of top-down modulation that support visual context processing.


Subject(s)
Cerebral Cortex , Visual Perception , Animals , Mice , Visual Perception/physiology , Cerebral Cortex/metabolism , Pyramidal Cells/metabolism , Interneurons/metabolism , Optogenetics , Vasoactive Intestinal Peptide/metabolism
3.
Curr Biol ; 33(18): 3969-3976.e4, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37643621

ABSTRACT

Context modulates how information is processed in the mammalian brain. For example, brain responses are amplified to contextually unusual stimuli. This phenomenon, known as "deviance detection,"1,2 is well documented in early, primary sensory cortex, where large responses are generated to simple stimuli that deviate from their context in low-order properties, such as line orientation, size, or pitch.2,3,4,5 However, the extent to which neural deviance detection manifests (1) in broader cortical networks and (2) to simple versus complex stimuli, which deviate only in their higher-order, multisensory properties, is not known. Consistent with a predictive processing framework,6,7 we hypothesized that deviance detection manifests in a hierarchical manner across cortical networks,8,9 emerging later and further downstream when stimulus deviance is complex. To test this, we examined brain responses of awake mice to simple unisensory deviants (e.g., visual line gratings, deviating from context in their orientation alone) versus complex multisensory deviants (i.e., audiovisual pairs, deviating from context only in their audiovisual pairing but not visual or auditory content alone). We find that mouse parietal associative area-a higher cortical region-displays robust multisensory deviance detection. In contrast, primary visual cortex exhibits strong unisensory visual deviance detection but weaker multisensory deviance detection. These results suggest that deviance detection signals in the cortex may be conceptualized as "prediction errors," which are primarily fed forward-or downstream-in cortical networks.6,7.


Subject(s)
Auditory Perception , Brain , Animals , Mice , Auditory Perception/physiology , Brain/physiology , Acoustic Stimulation , Visual Perception/physiology , Photic Stimulation , Mammals
4.
Cereb Cortex ; 33(15): 9417-9428, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37310190

ABSTRACT

Context modulates neocortical processing of sensory data. Unexpected visual stimuli elicit large responses in primary visual cortex (V1)-a phenomenon known as deviance detection (DD) at the neural level, or "mismatch negativity" (MMN) when measured with EEG. It remains unclear how visual DD/MMN signals emerge across cortical layers, in temporal relation to the onset of deviant stimuli, and with respect to brain oscillations. Here we employed a visual "oddball" sequence-a classic paradigm for studying aberrant DD/MMN in neuropsychiatric populations-and recorded local field potentials in V1 of awake mice with 16-channel multielectrode arrays. Multiunit activity and current source density profiles showed that although basic adaptation to redundant stimuli was present early (50 ms) in layer 4 responses, DD emerged later (150-230 ms) in supragranular layers (L2/3). This DD signal coincided with increased delta/theta (2-7 Hz) and high-gamma (70-80 Hz) oscillations in L2/3 and decreased beta oscillations (26-36 Hz) in L1. These results clarify the neocortical dynamics elicited during an oddball paradigm at a microcircuit level. They are consistent with a predictive coding framework, which posits that predictive suppression is present in cortical feed-back circuits, which synapse in L1, whereas "prediction errors" engage cortical feed-forward processing streams, which emanate from L2/3.


Subject(s)
Brain , Visual Cortex , Animals , Mice , Wakefulness , Electroencephalography , Evoked Potentials, Auditory/physiology , Acoustic Stimulation
5.
bioRxiv ; 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37131642

ABSTRACT

Context modulates neocortical processing of sensory data. Unexpected visual stimuli elicit large responses in primary visual cortex (V1) -- a phenomenon known as deviance detection (DD) at the neural level, or "mismatch negativity" (MMN) when measured with EEG. It remains unclear how visual DD/MMN signals emerge across cortical layers, in temporal relation to the onset of deviant stimuli, and with respect to brain oscillations. Here we employed a visual "oddball" sequence - a classic paradigm for studying aberrant DD/MMN in neuropsychiatric populations - and recorded local field potentials in V1 of awake mice with 16-channel multielectrode arrays. Multiunit activity and current source density profiles showed that while basic adaptation to redundant stimuli was present early (50ms) in layer 4 responses, DD emerged later (150-230ms) in supragranular layers (L2/3). This DD signal coincided with increased delta/theta (2-7Hz) and high-gamma (70-80Hz) oscillations in L2/3 and decreased beta oscillations (26-36hz) in L1. These results clarify the neocortical dynamics elicited during an oddball paradigm at a microcircuit level. They are consistent with a predictive coding framework, which posits that predictive suppression is present in cortical feed-back circuits, which synapse in L1, while "prediction errors" engage cortical feed-forward processing streams, which emanate from L2/3.

6.
bioRxiv ; 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37090646

ABSTRACT

A key function of the mammalian neocortex is to process sensory data in the context of current and past stimuli. Primary sensory cortices, such as V1, respond weakly to stimuli that typical in their context but strongly to novel stimuli, an effect known as "deviance detection". How deviance detection occurs in associative cortical regions that are downstream of V1 is not well-understood. Here we investigated parietal associative area (PTLp) responses to auditory, visual, and audio-visual mismatches with two-photon calcium imaging and local field potential recordings. We employed basic unisensory auditory and visual oddball paradigms as well as a novel multisensory oddball paradigm, involving typical parings (VaAc or VbAd) presented at p=.88 with rare "deviant" pairings (e.g. VaAd or VbAc) presented at p=.12. We found that PTLp displayed robust deviance detection responses to auditory-visual mismatches, both in individual neurons and in population theta and gamma-band oscillations. In contrast, V1 neurons displayed deviance detection only to visual deviants in a unisensory context, but not to auditory or auditory-visual mismatches. Taken together, these results accord with a predictive processing framework for cortical responses, wherein modality specific prediction errors (i.e. deviance detection responses) are computed in functionally specified cortical areas and feed-forward to update higher brain regions.

7.
bioRxiv ; 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36865311

ABSTRACT

Visual processing is strongly influenced by context. Stimuli that deviate from contextual regularities elicit augmented responses in primary visual cortex (V1). These heightened responses, known as "deviance detection," require both inhibition local to V1 and top-down modulation from higher areas of cortex. Here we investigated the spatiotemporal mechanisms by which these circuit elements interact to support deviance detection. Local field potential recordings in mice in anterior cingulate area (ACa) and V1 during a visual oddball paradigm showed that interregional synchrony peaks in the theta/alpha band (6-12 Hz). Two-photon imaging in V1 revealed that mainly pyramidal neurons exhibited deviance detection, while vasointestinal peptide-positive interneurons (VIPs) increased activity and somatostatin-positive interneurons (SSTs) decreased activity (adapted) to redundant stimuli (prior to deviants). Optogenetic drive of ACa-V1 inputs at 6-12 Hz activated V1-VIPs but inhibited V1-SSTs, mirroring the dynamics present during the oddball paradigm. Chemogenetic inhibition of VIP interneurons disrupted ACa-V1 synchrony and deviance detection responses in V1. These results outline spatiotemporal and interneuron-specific mechanisms of top-down modulation that support visual context processing.

8.
Cell Rep ; 37(5): 109925, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34731601

ABSTRACT

Neurovascular coupling (NVC), the process that links neuronal activity to cerebral blood flow changes, has been mainly studied in superficial brain areas, namely the neocortex. Whether the conventional, rapid, and spatially restricted NVC response can be generalized to deeper and functionally diverse brain regions remains unknown. Implementing an approach for in vivo two-photon imaging from the ventral surface of the brain, we show that a systemic homeostatic challenge, acute salt loading, progressively increases hypothalamic vasopressin (VP) neuronal firing and evokes a vasoconstriction that reduces local blood flow. Vasoconstrictions are blocked by topical application of a VP receptor antagonist or tetrodotoxin, supporting mediation by activity-dependent, dendritically released VP. Salt-induced inverse NVC results in a local hypoxic microenvironment, which evokes positive feedback excitation of VP neurons. Our results reveal a physiological mechanism by which inverse NVC responses regulate systemic homeostasis, further supporting the notion of brain heterogeneity in NVC responses.


Subject(s)
Cerebrovascular Circulation , Dendrites/metabolism , Neurovascular Coupling , Supraoptic Nucleus/blood supply , Vasoconstriction , Vasopressins/metabolism , Action Potentials , Animals , Blood Flow Velocity , Cell Hypoxia , Cellular Microenvironment , Female , Homeostasis , Infusions, Intravenous , Male , Microscopy, Fluorescence, Multiphoton , Rats, Transgenic , Rats, Wistar , Saline Solution, Hypertonic/administration & dosage , Time Factors , Vasopressins/genetics
9.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Article in English | MEDLINE | ID: mdl-33811144

ABSTRACT

Neural processing of sensory information is strongly influenced by context. For instance, cortical responses are reduced to predictable stimuli, while responses are increased to novel stimuli that deviate from contextual regularities. Such bidirectional modulation based on preceding sensory context is likely a critical component or manifestation of attention, learning, and behavior, yet how it arises in cortical circuits remains unclear. Using volumetric two-photon calcium imaging and local field potentials in primary visual cortex (V1) from awake mice presented with visual "oddball" paradigms, we identify both reductions and augmentations of stimulus-evoked responses depending, on whether the stimulus was redundant or deviant, respectively. Interestingly, deviance-augmented responses were limited to a specific subset of neurons mostly in supragranular layers. These deviance-detecting cells were spatially intermixed with other visually responsive neurons and were functionally correlated, forming a neuronal ensemble. Optogenetic suppression of prefrontal inputs to V1 reduced the contextual selectivity of deviance-detecting ensembles, demonstrating a causal role for top-down inputs. The presence of specialized context-selective ensembles in primary sensory cortex, modulated by higher cortical areas, provides a circuit substrate for the brain's construction and selection of prediction errors, computations which are key for survival and deficient in many psychiatric disorders.


Subject(s)
Cerebral Cortex/physiology , Neurons/physiology , Visual Perception , Animals , Calcium/metabolism , Cerebral Cortex/cytology , Connectome , Evoked Potentials, Visual , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence, Multiphoton , Neurons/metabolism
10.
Schizophr Bull ; 47(5): 1385-1398, 2021 08 21.
Article in English | MEDLINE | ID: mdl-33370434

ABSTRACT

Alterations in neocortical GABAergic interneurons (INs) have been affiliated with neuropsychiatric diseases, including schizophrenia (SZ). Significant progress has been made linking the function of a specific subtype of GABAergic cells, parvalbumin (PV) positive INs, to altered gamma-band oscillations, which, in turn, underlie perceptual and feedforward information processing in cortical circuits. Here, we review a smaller but growing volume of literature focusing on a separate subtype of neocortical GABAergic INs, somatostatin (SST) positive INs. Despite sharing similar neurodevelopmental origins, SSTs exhibit distinct morphology and physiology from PVs. Like PVs, SSTs are altered in postmortem brain samples from multiple neocortical regions in SZ, although basic and translational research into consequences of SST dysfunction has been relatively sparse. We highlight a growing body of work in rodents, which now indicates that SSTs may also underlie specific aspects of cortical circuit function, namely low-frequency oscillations, disinhibition, and mediation of cortico-cortical feedback. SSTs may thereby support the coordination of local cortical information processing with more global spatial, temporal, and behavioral context, including predictive coding and working memory. These functions are notably deficient in some cases of SZ, as well as other neuropsychiatric disorders, emphasizing the importance of focusing on SSTs in future translational studies. Finally, we highlight the challenges that remain, including subtypes within the SST class.


Subject(s)
Brain Waves/physiology , Interneurons/physiology , Neocortex , Parvalbumins/metabolism , Schizophrenia , Somatostatin/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Humans , Interneurons/metabolism , Neocortex/metabolism , Neocortex/physiopathology , Schizophrenia/metabolism , Schizophrenia/physiopathology
11.
J Neurosci Methods ; 351: 109046, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33359231

ABSTRACT

Recent technical advances in molecular biology and optical imaging have made it possible to record from up to thousands of densely packed neurons in superficial and deep brain regions in vivo, with cellular subtype specificity and high spatiotemporal fidelity. Such optical neurotechnologies are enabling increasingly fine-scaled studies of neuronal circuits and reliably co-active groups of neurons, so-called ensembles. Neuronal ensembles are thought to constitute the basic functional building blocks of brain systems, potentially exhibiting collective computational properties. While the technical framework of in vivo optical imaging and quantification of neuronal activity follows certain widely held standards, analytical methods for study of neuronal co-activity and ensembles lack consensus and are highly varied across the field. Here we provide a comprehensive step-by-step overview of theoretical, experimental, and analytical considerations for the identification and quantification of neuronal ensemble dynamics in high-resolution in vivo optical imaging studies.


Subject(s)
Brain , Neurons , Brain/diagnostic imaging , Optical Imaging
12.
Sci Rep ; 10(1): 13973, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32811878

ABSTRACT

The frequency at which a stimulus is presented determines how it is interpreted. For example, a repeated image may be of less interest than an image that violates the prior sequence. This process involves integration of sensory information and internal representations of stimulus history, functions carried out in higher-order sensory areas such as the posterior parietal cortex (PPC). Thus far, there are few detailed reports investigating the single-neuron mechanisms for processing of stimulus presentation frequency in PPC. To address this gap in knowledge, we recorded PPC activity using 2-photon calcium imaging and electrophysiology during a visual oddball paradigm. Calcium imaging results reveal differentiation at the level of single neurons for frequent versus rare conditions which varied depending on whether the stimulus was preferred or non-preferred by the recorded neural population. Such differentiation of oddball conditions was mediated primarily by stimulus-independent adaptation in the frequent condition.


Subject(s)
Parietal Lobe/physiology , Photic Stimulation/methods , Visual Perception/physiology , Animals , Electrophysiological Phenomena/physiology , Female , Ferrets , Neurons/physiology
13.
Front Neural Circuits ; 14: 13, 2020.
Article in English | MEDLINE | ID: mdl-32296311

ABSTRACT

In the neocortex, neuronal processing of sensory events is significantly influenced by context. For instance, responses in sensory cortices are suppressed to repetitive or redundant stimuli, a phenomenon termed "stimulus-specific adaptation" (SSA). However, in a context in which that same stimulus is novel, or deviates from expectations, neuronal responses are augmented. This augmentation is termed "deviance detection" (DD). This contextual modulation of neural responses is fundamental for how the brain efficiently processes the sensory world to guide immediate and future behaviors. Notably, context modulation is deficient in some neuropsychiatric disorders such as schizophrenia (SZ), as quantified by reduced "mismatch negativity" (MMN), an electroencephalography waveform reflecting a combination of SSA and DD in sensory cortex. Although the role of NMDA-receptor function and other neuromodulatory systems on MMN is established, the precise microcircuit mechanisms of MMN and its underlying components, SSA and DD, remain unknown. When coupled with animal models, the development of powerful precision neurotechnologies over the past decade carries significant promise for making new progress into understanding the neurobiology of MMN with previously unreachable spatial resolution. Currently, rodent models represent the best tool for mechanistic study due to the vast genetic tools available. While quantifying human-like MMN waveforms in rodents is not straightforward, the "oddball" paradigms used to study it in humans and its underlying subcomponents (SSA/DD) are highly translatable across species. Here we summarize efforts published so far, with a focus on cortically measured SSA and DD in animals to maintain relevance to the classically measured MMN, which has cortical origins. While mechanistic studies that measure and contrast both components are sparse, we synthesize a potential set of microcircuit mechanisms from the existing rodent, primate, and human literature. While MMN and its subcomponents likely reflect several mechanisms across multiple brain regions, understanding fundamental microcircuit mechanisms is an important step to understand MMN as a whole. We hypothesize that SSA reflects adaptations occurring at synapses along the sensory-thalamocortical pathways, while DD depends on both SSA inherited from afferent inputs and resulting disinhibition of non-adapted neurons arising from the distinct physiology and wiring properties of local interneuronal subpopulations and NMDA-receptor function.


Subject(s)
Acoustic Stimulation/methods , Auditory Cortex/physiology , Evoked Potentials, Auditory/physiology , Nerve Net/physiology , Synapses/physiology , Acoustic Stimulation/psychology , Animals , Electroencephalography/methods , Electroencephalography/psychology , Humans , Receptors, N-Methyl-D-Aspartate/physiology
14.
Biol Psychiatry ; 88(3): 215-223, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32143831

ABSTRACT

BACKGROUND: A breakdown of synchrony within neuronal ensembles leading to destabilization of network "attractors" could be a defining aspect of neuropsychiatric diseases such as schizophrenia, representing a common downstream convergence point for the diverse etiological pathways associated with the disease. Using a mouse genetic model, we demonstrated that altered ensembles are associated with pathological sensory cortical processing phenotypes resulting from loss of function mutations in the Setd1a gene, a recently identified rare risk genotype with very high penetrance for schizophrenia. METHODS: We used fast two-photon calcium imaging of neuronal populations (calcium indicator GCaMP6s, 10 Hz, 100-250 cells, layer 2/3 of primary visual cortex, i.e., V1) in awake head-fixed mice (Setd1a+/- vs. wild-type littermate control) during rest and visual stimulation with moving full-field square-wave gratings (0.04 cycles per degree, 2.0 cycles per second, 100% contrast, 12 directions). Multielectrode recordings were analyzed in the time-frequency domain to assess stimulus-induced oscillations and cross-layer phase synchrony. RESULTS: Neuronal activity and orientation/direction selectivity were unaffected in Setd1a+/- mice, but correlations between cell pairs in V1 showed altered distributions compared with wild-type mice, in both ongoing and visually evoked activity. Furthermore, population-wide "ensemble activations" in Setd1a+/- mice were markedly less reliable over time during rest and visual stimulation, resulting in unstable encoding of basic visual information. This alteration of ensembles coincided with reductions in alpha and high-gamma band phase synchrony within and between cortical layers. CONCLUSIONS: These results provide new evidence for an ensemble hypothesis of schizophrenia and highlight the utility of Setd1a+/- mice for modeling sensory-processing phenotypes.


Subject(s)
Schizophrenia , Visual Cortex , Animals , Mice , Neurons , Phenotype , Photic Stimulation , Schizophrenia/genetics
15.
J Neurosci ; 39(43): 8562-8575, 2019 10 23.
Article in English | MEDLINE | ID: mdl-31427393

ABSTRACT

Understanding seizure formation and spread remains a critical goal of epilepsy research. We used fast in vivo two-photon calcium imaging in male mouse neocortex to reconstruct, with single-cell resolution, the dynamics of acute (4-aminopyridine) focal cortical seizures as they originate within a spatially confined seizure initiation site (intrafocal region), and subsequently propagate into neighboring cortical areas (extrafocal region). We find that seizures originate as local neuronal ensembles within the initiation site. This abnormal hyperactivity engages increasingly larger areas in a saltatory fashion until it breaks into neighboring cortex, where it proceeds smoothly and is then detected electrophysiologically (LFP). Interestingly, PV inhibitory interneurons have spatially heterogeneous activity in intrafocal and extrafocal territories, ruling out a simple role of inhibition in seizure formation and spread. We propose a two-step model for the progression of focal seizures, where neuronal ensembles activate first, generating a microseizure, followed by widespread neural activation in a traveling wave through neighboring cortex during macroseizures.SIGNIFICANCE STATEMENT We have used calcium imaging in mouse sensory cortex in vivo to reconstruct the onset of focal seizures elicited by local injection of the chemoconvulsant 4-aminopyridine. We demonstrate at cellular resolution that acute focal seizures originate as increasingly synchronized local neuronal ensembles. Because of its spatial confinement, this process may at first be undetectable even by nearby LFP electrodes. Further, we establish spatial footprints of local neural subtype activity that correspond to consecutive steps of seizure microprogression. Such footprints could facilitate determining the recording location (e.g., inside/outside an epileptogenic focus) in high-resolution studies, even in the absence of a priori knowledge about where exactly a seizure started.


Subject(s)
Neocortex/physiopathology , Nerve Net/physiopathology , Neurons/physiology , Seizures/physiopathology , Animals , Calcium/metabolism , Electroencephalography , Male , Mice
16.
Brain Res ; 1720: 146307, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31247203

ABSTRACT

Aniridia is a congenital disorder, predominantly caused by heterozygous mutations of the PAX6 gene. While ocular defects have been extensively characterized in this population, brain-related anatomical and functional abnormalities are emerging as a prominent feature of the disorder. Individuals with aniridia frequently exhibit auditory processing deficits despite normal audiograms. While previous studies have reported hypoplasia of the anterior commissure and corpus callosum in some of these individuals, the neurophysiological basis of these impairments remains unexplored. This study provides direct assessment of neural activity related to auditory processing in aniridia. Participants were presented with tones designed to elicit an auditory steady-state response (ASSR) at 22 Hz, 40 Hz, and 84 Hz, and infrequent broadband target tones to maintain attention during electroencephalography (EEG) recording. Persons with aniridia showed increased early cortical responses (P50 AEP) in response to all tones, and increased high-frequency oscillatory entrainment (84 Hz ASSR). In contrast, this group showed a decreased cortical integration response (P300 AEP to target tones) and reduced neural entrainment to cortical beta-band stimuli (22 Hz ASSR). Collectively, our results suggest that subcortical and early cortical auditory processing is augmented in aniridia, while functional cortical integration of auditory information is deficient in this population.


Subject(s)
Aniridia/physiopathology , Auditory Cortex/physiology , Auditory Perception/physiology , Acoustic Stimulation/methods , Adult , Brain/physiopathology , Corpus Callosum/physiopathology , Electroencephalography/methods , Evoked Potentials, Auditory/physiology , Female , Hearing Tests , Humans , Male , Middle Aged , PAX6 Transcription Factor/genetics , PAX6 Transcription Factor/metabolism
17.
Schizophr Res ; 209: 218-226, 2019 07.
Article in English | MEDLINE | ID: mdl-31080153

ABSTRACT

Deviant auditory steady-state responses (aSSRs) in the gamma range (30-90 Hz) may be translational biomarkers for schizophrenia (SZ). This study tests whether aSSR deviations are (i) specific to SZ across the psychosis dimension, (ii) specific to particular frequency bands, and (iii) present in bipolar I disorder without psychosis (BDNP). METHODS: Beta (20-), low- (40-), and high-gamma (80-Hz) aSSRs were measured with EEG and compared across 113 SZ, 105 schizoaffective disorder (SAD), 99 bipolar disorder with psychosis (BDP), 68 BDNP, and 137 healthy comparison subjects (HC). Standard aSSR measures (single-trial power [STP] and inter-trial phase coherence [ITC]), as well as evoked responses to stimulus onsets/offsets and pre-stimulus power, were quantified. Multivariate canonical discriminant analysis was used to summarize variables that efficiently and maximally differentiated groups. RESULTS: (i) Psychosis groups showed reduced responses on ITC 20 Hz, STP/ITC 40 Hz, STP/ITC 80 Hz, indicating dimensional reductions in aSSR across the psychosis spectrum not specific to aSSR frequency. For the 40- and 80-Hz ITCs there was greater reduction in SZ compared to SAD, possibly indexing cortical disruptions linked to psychosis without mood symptoms. (ii) All probands had elevated pre-stimulus power, possibly compromising neural entrainment to the steady-state stimuli. (iii) Onset/Offset and 80 Hz ITC responses were most important for group discrimination and showed dimensional reduction across the schizo-bipolar spectrum. CONCLUSIONS: Deviant aSSRs were found across the schizo-bipolar spectrum at multiple frequencies with psychosis status and severity linked to greatest reductions at low and high gamma.


Subject(s)
Affective Disorders, Psychotic/physiopathology , Beta Rhythm/physiology , Bipolar Disorder/physiopathology , Evoked Potentials, Auditory/physiology , Gamma Rhythm/physiology , Psychotic Disorders/physiopathology , Schizophrenia/physiopathology , Adult , Affective Disorders, Psychotic/diagnosis , Auditory Perception/physiology , Biomarkers , Bipolar Disorder/diagnosis , Female , Humans , Male , Middle Aged , Psychotic Disorders/diagnosis , Schizophrenia/diagnosis , Severity of Illness Index
18.
Cell Rep ; 26(1): 266-278.e5, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30605681

ABSTRACT

Intracellular recordings in vivo remains the best technique to link single-neuron electrical properties to network function. Yet existing methods are limited in accuracy, throughput, and duration, primarily via washout, membrane damage, and movement-induced failure. Here, we introduce flexible quartz nanopipettes (inner diameters of 10-25 nm and spring constant of ∼0.08 N/m) as nanoscale analogs of traditional glass microelectrodes. Nanopipettes enable stable intracellular recordings (seal resistances of 500 to ∼800 MΩ, 5 to ∼10 cells/nanopipette, and duration of ∼1 hr) in anaesthetized and awake head-restrained mice, exhibit minimal diffusional flux, and facilitate precise recording and stimulation. When combined with quantum-dot labels and microprisms, nanopipettes enable two-photon targeted electrophysiology from both somata and dendrites, and even paired recordings from neighboring neurons, while permitting simultaneous population imaging across cortical layers. We demonstrate the versatility of this method by recording from parvalbumin-positive (Pv) interneurons while imaging seizure propagation, and we find that Pv depolarization block coincides with epileptic spread. Flexible nanopipettes present a simple method to procure stable intracellular recordings in vivo.


Subject(s)
Electrophysiological Phenomena/genetics , Electrophysiology/methods , Animals , Mice
19.
Focus (Am Psychiatr Publ) ; 16(2): 225-236, 2018 Apr.
Article in English | MEDLINE | ID: mdl-32015710

ABSTRACT

(Reprinted with permission from American Journal of Psychiatry 2016; 173:373-384).

20.
Cereb Cortex ; 28(5): 1831-1845, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29106504

ABSTRACT

For efficient cortical processing, neural circuit dynamics must be spatially and temporally regulated with great precision. Although parvalbumin-positive (PV) interneurons can control network synchrony, it remains unclear how they contribute to spatio-temporal patterning of activity. We investigated this by optogenetic inactivation of PV cells with simultaneous two-photon Ca2+ imaging from populations of neurons in mouse visual cortex in vivo. For both spontaneous and visually evoked activity, PV interneuron inactivation decreased network synchrony. But, interestingly, the response reliability and spatial extent of coactive neuronal ensembles during visual stimulation were also disrupted by PV-cell suppression, which reduced the functional repertoire of ensembles. Thus, PV interneurons can control the spatio-temporal dynamics of multineuronal activity by functionally sculpting neuronal ensembles and making them more different from each other. In doing so, inhibitory circuits could help to orthogonalize multicellular patterns of activity, enabling neural circuits to more efficiently occupy a higher dimensional space of potential dynamics.


Subject(s)
Evoked Potentials, Visual/physiology , Interneurons/physiology , Neural Pathways/physiology , Parvalbumins/metabolism , Visual Cortex/cytology , Visual Cortex/metabolism , Action Potentials/physiology , Age Factors , Analysis of Variance , Animals , Animals, Newborn , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Calcium/metabolism , Fluorescent Dyes/metabolism , In Vitro Techniques , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Optogenetics , Parvalbumins/genetics , Photic Stimulation , Synapsins/genetics , Synapsins/metabolism , Transduction, Genetic , Visual Cortex/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...