Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(4): e15362, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37151679

ABSTRACT

Traditional methods for designing concrete mixtures provide good results; however, they do not guarantee the optimum composition. Consequently, applying operational research techniques is motivated by an increasing need for designers to proportion the concrete's raw materials that satisfy the concrete performance requirements such as mechanical properties, chemical properties, workability, sustainability, and cost. For this reason, many authors have been looking for mathematical programming and machine learning solutions to predict concrete mix properties and optimise concrete mixtures. Therefore, a comprehensive review of operational research techniques concerning the design and proportioning of concrete mixtures and a classification framework are presented herein.

2.
Sensors (Basel) ; 22(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35161706

ABSTRACT

Floods are a major cause of loss of lives, destruction of infrastructure, and massive damage to a country's economy. Floods, being natural disasters, cannot be prevented completely; therefore, precautionary measures must be taken by the government, concerned organizations such as the United Nations Office for Disaster Risk Reduction and Office for the coordination of Human Affairs, and the community to control its disastrous effects. To minimize hazards and to provide an emergency response at the time of natural calamity, various measures must be taken by the disaster management authorities before the flood incident. This involves the use of the latest cutting-edge technologies which predict the occurrence of disaster as early as possible such that proper response strategies can be adopted before the disaster. Floods are uncertain depending on several climatic and environmental factors, and therefore are difficult to predict. Hence, improvement in the adoption of the latest technology to move towards automated disaster prediction and forecasting is a must. This study reviews the adoption of remote sensing methods for predicting floods and thus focuses on the pre-disaster phase of the disaster management process for the past 20 years. A classification framework is presented which classifies the remote sensing technologies being used for flood prediction into three types, which are: multispectral, radar, and light detection and ranging (LIDAR). Further categorization is performed based on the method used for data analysis. The technologies are examined based on their relevance to flood prediction, flood risk assessment, and hazard analysis. Some gaps and limitations present in each of the reviewed technologies have been identified. A flood prediction and extent mapping model are then proposed to overcome the current gaps. The compiled results demonstrate the state of each technology's practice and usage in flood prediction.


Subject(s)
Disasters , Floods , Humans , Radar , Remote Sensing Technology , Risk Assessment
3.
Sci Total Environ ; 806(Pt 3): 151351, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34740667

ABSTRACT

Integrating disruptive technologies within smart cities improves the infrastructure needed to potentially deal with disasters. This paper provides a perspective review of disruptive technologies such as the Internet of Things (IoT), image processing, artificial intelligence (AI), big data and smartphone applications which are in use and have been proposed for future improvements in disaster management of urban regions. The key focus of this paper is exploring ways in which smart cities could be established to harness the potential of disruptive technologies and improve post-disaster management. The key questions explored are a) what are the gaps or barriers to the utilization of disruptive technologies in the area of disaster management and b) How can the existing methods of disaster management be improved through the application of disruptive technologies. To respond to these questions, a novel framework based on integrated approaches based on big data analytics and AI is proposed for developing disaster management solutions using disruptive technologies.


Subject(s)
Disasters , Disruptive Technology , Artificial Intelligence , Big Data , Data Science
SELECTION OF CITATIONS
SEARCH DETAIL
...