Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Omega ; 3(1): 753-759, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-30023788

ABSTRACT

Sphingoid bases, which have a 2-amino-1,3-diol common functional group, are the structural backbone units of all sphingolipids. Recently, much attention has been focused on sphingoid bases because of their potentially beneficial bioactivities toward various cancer cells as well as their dietary interest. However, low abundance and the handling complexity caused by their amphiphilic character led to very limited research on them. Glutaraldehyde has two aldehyde groups, and it reacts rapidly with the 2-amino-1,3-diol functional group of sphingosine to give a tricyclic product. Immobilization of glutaraldehyde on a resin was successfully performed by organic synthesis, starting from trans-p-coumaric acid via eight steps. This approach suppresses the self-polymerization of glutaraldehyde, and addition of water to the developed resin causes the formation of cyclic double hemiacetal function, which avoids oxidation like a reducing sugar in nature and makes it stable even for up to 1 year incubation. The resin was applied to the solid-phase extracting experiment of free sphingosine from human serum at a concentration of 280 nM. Another extraction study of edible golden oyster mushrooms showed that the sphingoid base was selectively captured from complex natural extracts. These results demonstrate that the developed glutaraldehyde resin method is a highly selective method, and hence, the combination of it with the o-phthaldialdehyde HPLC method was confirmed as an efficient and sensitive method for analysis of sphingoid bases in biological samples.

2.
Org Lett ; 18(10): 2327-30, 2016 05 20.
Article in English | MEDLINE | ID: mdl-27135615

ABSTRACT

Vibrational circular dichroism (VCD) was first applied to the stereochemical analysis of sphingosine. VCD patterns derived from the C═C stretch as well as other mid-infrared (IR) regions were practical markers to discriminate all the stereoisomers of intact sphingosine. Glutaraldehyde was found as an excellent derivatizing reagent for sphingosine which improves its solubility in VCD-friendly nonpolar solvents such as chloroform and enhances the VCD intensities by forming a rigid cyclized structure.

3.
Org Lett ; 18(4): 768-71, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26854352

ABSTRACT

D609 (1) has been used as a lipid-related enzyme inhibitor during the past three decades. Although it has eight possible stereoisomers, no systematic research considering its chirality has been performed. In this paper, eight possible chiral alcohols as direct precursors of D609 were synthesized, and their stereochemistries were elucidated by a vibrational circular dichroism (VCD) technique. Phosphatidylcholine-specific phospholipase C and sphingomyelin synthase inhibition assays of these isomers showed considerable differences in their activities.


Subject(s)
Bridged-Ring Compounds/chemistry , Bridged-Ring Compounds/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Thiones/chemistry , Thiones/pharmacology , Type C Phospholipases/antagonists & inhibitors , Circular Dichroism , Lipids/chemistry , Molecular Structure , Norbornanes , Stereoisomerism , Thiocarbamates
4.
J Lipid Res ; 57(2): 325-31, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26667669

ABSTRACT

Sphingoid base derivatives have attracted increasing attention as promising chemotherapeutic candidates against lifestyle diseases such as diabetes and cancer. Natural sphingoid bases can be a potential resource instead of those derived by time-consuming total organic synthesis. In particular, glucosylceramides (GlcCers) in food plants are enriched sources of sphingoid bases, differing from those of animals. Several chemical methodologies to transform GlcCers to sphingoid bases have already investigated; however, these conventional methods using acid or alkaline hydrolysis are not efficient due to poor reaction yield, producing complex by-products and resulting in separation problems. In this study, an extremely efficient and practical chemoenzymatic transformation method has been developed using microwave-enhanced butanolysis of GlcCers and a large amount of readily available almond ß-glucosidase for its deglycosylation reaction of lysoGlcCers. The method is superior to conventional acid/base hydrolysis methods in its rapidity and its reaction cleanness (no isomerization, no rearrangement) with excellent overall yield.


Subject(s)
Glucosylceramides/chemistry , Sphingolipids/chemistry , Sphingosine/chemistry , Humans , Hydrolysis , Microwaves , Molecular Structure , Sphingolipids/chemical synthesis , Sphingosine/chemical synthesis
5.
Biophys J ; 105(8): 1756-66, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24138851

ABSTRACT

Photoisomerization of biliverdin (BV) chromophore triggers the photoresponse in native Agp1 bacteriophytochrome. We discuss heterogeneity in phytochrome Pr form to account for the shape of the absorption profile. We investigated different regions of the absorption profile by angle balanced polarization resolved femtosecond VIS pump-IR probe spectroscopy. We studied the Pr form of Agp1 with its natural chromophore and with a sterically locked 18Et-BV (locked Agp1). We followed the dynamics and orientations of the carbonyl stretching vibrations of ring D and ring A in their ground and electronically excited states. Photoisomerization of ring D is reflected by strong signals of the ring D carbonyl vibration. In contrast, orientational data on ring A show no rotation of ring A upon photoexcitation. Orientational data allow excluding a ZZZasa geometry and corroborates a nontwisted ZZZssa geometry of the chromophore. We found no proof for heterogeneity but identified a new, to our knowledge, electronic transition in the absorption profile at 644 nm (S0→S2). Excitation of the S0→S2 transition will introduce a more complex photodynamics compared with S0→S1 transition. Our approach provides fundamental information on disentanglement of absorption profiles, identification of chromophore structures, and determination of molecular groups involved in the photoisomerization process of photoreceptors.


Subject(s)
Agrobacterium tumefaciens/metabolism , Bacterial Proteins/metabolism , Electrons , Molecular Probes/metabolism , Phytochrome/metabolism , Absorption , Spectrophotometry, Infrared , Time Factors , Vibration
6.
J Biol Chem ; 286(2): 1103-13, 2011 Jan 14.
Article in English | MEDLINE | ID: mdl-21071442

ABSTRACT

We performed steady state fluorescence measurements with phytochromes Agp1 and Agp2 of Agrobacterium tumefaciens and three mutants in which photoconversion is inhibited. These proteins were assembled with the natural chromophore biliverdin (BV), with phycoerythrobilin (PEB), which lacks a double bond in the ring C-D-connecting methine bridge, and with synthetic bilin derivatives in which the ring C-D-connecting methine bridge is locked. All PEB and locked chromophore adducts are photoinactive. According to fluorescence quantum yields, the adducts may be divided into four different groups: wild type BV adducts exhibiting a weak fluorescence, mutant BV adducts with about 10-fold enhanced fluorescence, adducts with locked chromophores in which the fluorescence quantum yields are around 0.02, and PEB adducts with a high quantum yield of around 0.5. Thus, the strong fluorescence of the PEB adducts is not reached by the locked chromophore adducts, although the photoconversion energy dissipation pathway is blocked. We therefore suggest that ring D of the bilin chromophore, which contributes to the extended π-electron system of the locked chromophores, provides an energy dissipation pathway that is independent on photoconversion.


Subject(s)
Agrobacterium tumefaciens/chemistry , Bacterial Proteins/chemistry , Fluorescent Dyes/chemistry , Phytochrome/chemistry , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biliverdine/chemistry , Biliverdine/genetics , Biliverdine/metabolism , Fluorescence , Fluorescent Dyes/metabolism , Mutagenesis, Site-Directed , Photochemistry , Phycobilins/chemistry , Phycobilins/genetics , Phycobilins/metabolism , Phycoerythrin/chemistry , Phycoerythrin/genetics , Phycoerythrin/metabolism , Phytochrome/genetics , Phytochrome/metabolism , Protein Structure, Tertiary
7.
FEBS J ; 276(16): 4405-13, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19614742

ABSTRACT

Many vertebrate species express two enzymes that are capable of catalysing the reduction of various isomers of biliverdin. Biliverdin-IXalpha reductase (BVR-A) is most active with its physiological substrate biliverdin-IXalpha, but can also reduce the three other biliverdin isomers IXbeta, IXdelta and IXgamma. Biliverdin-IXbeta reductase (BVR-B) catalyses the reduction of only the IXbeta, IXdelta and IXgamma isomers of biliverdin. Therefore, the activity of BVR-A can be measured using biliverdin-IXalpha as a specific substrate. We now show that the dimethyl esters of biliverdin-IXbeta and biliverdin-IXdelta are substrates for BVR-B, but not for BVR-A. This provides a useful method for specifically assaying the activity of both BVR-A and BVR-B in crude mixtures, using biliverdin-IXalpha for BVR-A and the dimethyl ester of either biliverdin-IXbeta or biliverdin-IXdelta for BVR-B. Human BVR-A has been suggested as a pharmacological target for neonatal jaundice. Because of the absence of a crystal structure with biliverdin bound to BVR-A, we have investigated indirect ways of examining tetrapyrrole binding. In the present study, we report that a number of sterically locked conformers of 18-ethylbiliverdin-IXalpha are substrates for human BVR-A, and discuss the implications for the biliverdin binding site. The oxidation of bilirubin-IXalpha ditaurate to biliverdin-IXalpha ditaurate is also described. We show that biliverdin-IXalpha ditaurate is a substrate for human BVR-A and discuss the possibility of using a competing substrate, which is reduced to a water soluble and excretable rubin, as a prototypic inhibitor of BVR-A.


Subject(s)
Oxidoreductases Acting on CH-CH Group Donors/metabolism , Porphyrins/metabolism , Tetrapyrroles/chemistry , Binding Sites , Humans , Kinetics , Ligands , Molecular Probe Techniques , Molecular Probes/chemical synthesis , Molecular Probes/chemistry , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Protein Binding , Substrate Specificity , Tetrapyrroles/chemical synthesis
8.
J Biol Chem ; 281(38): 28162-73, 2006 Sep 22.
Article in English | MEDLINE | ID: mdl-16803878

ABSTRACT

Phytochromes are photoreceptors with a bilin chromophore in which light triggers the conversion between the red-absorbing form Pr and the far-red-absorbing form Pfr. Agrobacterium tumefaciens has two phytochromes, Agp1 and Agp2, with antagonistic properties: in darkness, Agp1 converts slowly from Pfr to Pr, whereas Agp2 converts slowly from Pr to Pfr. In a previous study, we have assembled Agp1 with synthetic locked chromophores 15Za, 15Zs, 15Ea, and 15Es in which the C15=C16 double bond is fixed in either the E or Z configuration and the C14-C15 single bond is fixed in either the syn (s) or anti (a) conformation. In the present study, the locked chromophores 5Za and 5Zs were used for assembly with Agp1; in these chromophores, the C4=C5 double bond is fixed in the Z configuration, and the C5-C6 single bond is fixed in either the syn or anti conformation. All locked chromophores were also assembled with Agp2. The data showed that in both phytochromes the Pr chromophore adopts a C4=C5 Z C5-C6 syn C15=C16 Z C14-C15 anti stereochemistry and that in the Pfr chromophore the C15=C16 double bond has isomerized to the E configuration, whereas the C14-C15 single bond remains in the anti conformation. Photoconversion shifted the absorption maxima of the 5Zs adducts to shorter wavelengths, whereas the 5Za adducts were shifted to longer wavelengths. Thus, the C5-C6 single bond of the Pfr chromophore is rather in an anti conformation, supporting the previous suggestion that during photoconversion of phytochromes, a rotation around the ring A-B connecting single bond occurs.


Subject(s)
Bacterial Proteins/chemistry , Phytochrome/chemistry , Rhizobium/chemistry , Light
9.
J Struct Biol ; 153(1): 97-102, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16377207

ABSTRACT

Phytochromes are photochromic photoreceptors with a bilin chromophore that have been found in plants and bacteria. Typical bacterial phytochromes are composed of an N-terminal photosensory chromophore module and a C-terminal protein kinase. The former contains the chromophore, which allows phytochromes to adopt the two interconvertible spectral forms, Pr and Pfr. The N-terminal photosensory module of Agrobacterium phytochrome Agp1, Agp1-M15, was used for crystallization studies. The protein was either assembled with the natural chromophore biliverdin or a sterically locked synthetic biliverdin-derivative, termed 15Za. The last-named adduct does not undergo photoisomerization due to an additional carbon chain between the rings C and D of the chromophore. Both adducts could be crystallized, but the resolution was largely improved by the use of 15Za. Crystals of biliverdin-Agp1-M15 diffract to 6A resolution and belong to the tetragonal space group I422 with unit cell dimensions a = b = 171 Angstroms, c = 81 Angstroms, crystals of 15Za-Agp1-M15 belong to the same space group with similar unit cell dimensions a = b = 174 Angstroms, c = 80 Angstroms, but diffract to 3.4 Angstroms resolution. Assuming the asymmetric unit to be occupied by one monomer of 55kDa, the unit cell contains 54-55% solvent with a crystal volume per protein mass, V(m), of 2.7 Angstroms(3) Da(-1).


Subject(s)
Agrobacterium tumefaciens , Bacterial Proteins/chemistry , Photoreceptors, Microbial/chemistry , Phytochrome/chemistry , Biliverdine/chemistry , Biliverdine/metabolism , Crystallization , Crystallography, X-Ray , Phytochrome/metabolism , Protein Structure, Tertiary
10.
J Biol Chem ; 280(26): 24491-7, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-15878872

ABSTRACT

Phytochrome photoreceptors undergo reversible photoconversion between the red-absorbing form, Pr, and the far-red-absorbing form, Pfr. The first step in the conversion from Pr to Pfr is a Z to E isomerization around the C15=C16 double bond of the bilin chromophore. We prepared four synthetic biliverdin (BV) derivatives in which rings C and D are sterically locked by cyclizing with an additional carbon chain. In these chromophores, which are termed 15Za, 15Zs, 15Ea, and 15Es, the C15=C16 double bond is in either the Z or E configuration and the C14-C15 single bond in either the syn or anti conformation. The chromophores were assembled with Agrobacterium phytochrome Agp1, which incorporates BV as natural chromophore. All locked BV derivatives bound covalently to the protein and formed adducts with characteristic spectral properties. The 15Za adduct was spectrally similar to the Pr form and the 15Ea adduct similar to the Pfr form of the BV adduct. Thus, the chromophore of Agp1 adopts a C15=C16 Z configuration and a C14-C15 anti conformation in the Pr form and a C15=C16 E configuration and a C14-C15 anti conformation in the Pfr form. Both the 15Zs and the 15Es adducts absorbed only in the blue region of the visible spectra. All chromophore adducts were analyzed by size exclusion chromatography and histidine kinase activity to probe for protein conformation. In either case, the 15Za adduct behaved like the Pr and the 15Ea adduct like the Pfr form of Agp1. Replacing the natural chromophore by a locked 15Ea derivative can thus bring phytochrome holoprotein in the Pfr form in darkness. In this way, physiological action of Pfr can be studied in vivo and separated from Pr/Pfr cycling and other light effects.


Subject(s)
Agrobacterium tumefaciens/metabolism , Bacterial Proteins/chemistry , Bile Pigments/chemistry , Biliverdine/chemistry , Light-Harvesting Protein Complexes/chemistry , Carbon/chemistry , Chromatography , Escherichia coli/metabolism , Histidine Kinase , Models, Chemical , Molecular Conformation , Phosphorylation , Protein Binding , Protein Kinases/chemistry , Sodium Dodecyl Sulfate , Spectrophotometry , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...