Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 6(8): 5689-5697, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33681608

ABSTRACT

A new platform that allows encapsulation of anionic surfactants into nanosized capsules and subsequent release upon deployment is described. The system is based on DOWFAX surfactant molecules incorporated into sub-100 nm hollow silica nanoparticles composed of a mesoporous shell. The particles released 40 wt % of the encapsulated surfactant at 70 °C compared to 24 wt % at 25 °C after 21 and 18 days, respectively. The use of the particles for subsurface applications is assessed by studying the effectiveness of the particles to alter the wettability of hydrophobic surfaces and reduction of the interfacial tension. The release of the surfactant molecules in the suspension reduces the contact angle of a substrate from 105 to 25° over 55 min. A sustained release profile is demonstrated by a continuous reduction of the interfacial tension of an oil suspension, where the interfacial tension is reduced from 62 to 2 mN m-1 over a period of 3 days.

2.
ACS Appl Mater Interfaces ; 9(2): 1737-1745, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-27976846

ABSTRACT

Engineering and scaling-up new materials for better water desalination are imperative to find alternative fresh water sources to meet future demands. Herein, the fabrication of hydrophobic poly(ether imide) composite nanofiber membranes doped with novel ethylene-pentafluorophenylene-based periodic mesoporous organosilica nanoparticles is reported for enhanced and fouling resistant membrane distillation. Novel organosilica nanoparticles were homogeneously incorporated into electrospun nanofiber membranes depicting a proportional increase of hydrophobicity to the particle contents. Direct contact membrane distillation experiments on the organosilica-doped membrane with only 5% doping showed an increase of flux of 140% compared to commercial membranes. The high porosity of organosilica nanoparticles was further utilized to load the eugenol antimicrobial agent which produced a dramatic enhancement of the antibiofouling properties of the membrane of 70% after 24 h.

SELECTION OF CITATIONS
SEARCH DETAIL
...