Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Genet ; 110(8): 1249-1265, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37506692

ABSTRACT

The Healthy Oregon Project (HOP) is a statewide effort that aims to build a large research repository and influence the health of Oregonians through providing no-cost genetic screening to participants for a next-generation sequencing 32-gene panel comprising genes related to inherited cancers and familial hypercholesterolemia. This type of unbiased population screening can detect at-risk individuals who may otherwise be missed by conventional medical approaches. However, challenges exist for this type of high-throughput testing in an academic setting, including developing a low-cost high-efficiency test and scaling up the clinical laboratory for processing large numbers of samples. Modifications to our academic clinical laboratory including efficient test design, robotics, and a streamlined analysis approach increased our ability to test more than 1,000 samples per month for HOP using only one dedicated HOP laboratory technologist. Additionally, enrollment using a HIPAA-compliant smartphone app and sample collection using mouthwash increased efficiency and reduced cost. Here, we present our experience three years into HOP and discuss the lessons learned, including our successes, challenges, opportunities, and future directions, as well as the genetic screening results for the first 13,670 participants tested. Overall, we have identified 730 pathogenic/likely pathogenic variants in 710 participants in 24 of the 32 genes on the panel. The carrier rate for pathogenic/likely pathogenic variants in the inherited cancer genes on the panel for an unselected population was 5.0% and for familial hypercholesterolemia was 0.3%. Our laboratory experience described here may provide a useful model for population screening projects in other states.


Subject(s)
Hyperlipoproteinemia Type II , Neoplasms , Humans , Oregon/epidemiology , Early Detection of Cancer , Genetic Testing , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/epidemiology , Hyperlipoproteinemia Type II/genetics , Neoplasms/diagnosis , Neoplasms/epidemiology , Neoplasms/genetics
2.
Gene Ther ; 13(5): 457-62, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16319949

ABSTRACT

Novel recombinant adeno-associated virus vectors pseudotyped with serotype 8 capsid (rAAV2/8) have recently shown exciting promise as effective liver-directed gene transfer reagents. We have produced a novel liver-specific rAAV2/8 vector expressing the mouse phenylalanine hydroxylase (Pah) cDNA and have administered this vector to hyperphenylalaninemic PAH-deficient Pah(enu2) mice, a model of human phenylketonuria (PKU). Our hypothesis was that this vector would produce sufficient hepatocyte transduction frequency and PAH activity to correct blood phenylalanine levels in murine PKU. Portal vein injection of recombinant AAV2/8 vector into five adult Pah(enu2) mice yielded complete and stable (up to 17 weeks) correction of serum phenylalanine levels. Liver PAH activity was corrected to 11.5+/-2.4% of wild type liver activity and was associated with a significant increase in phenylalanine clearance following parenteral phenylalanine challenge. Although questions of long-term safety and stability of expression remain, recombinant AAV2/8-mediated, liver-directed gene therapy is a promising novel treatment approach for PKU and allied inborn errors of metabolism.


Subject(s)
Dependovirus/genetics , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Liver/metabolism , Phenylalanine Hydroxylase/genetics , Phenylketonurias/therapy , Animals , Female , Gene Expression , Hair Color , Mice , Mice, Inbred C57BL , Models, Animal , Phenylalanine Hydroxylase/blood , Phenylalanine Hydroxylase/metabolism , Phenylketonurias/complications , Phenylketonurias/metabolism , Pigmentation Disorders/etiology , Pigmentation Disorders/metabolism , Pigmentation Disorders/therapy , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Transduction, Genetic/methods
3.
Appl Environ Microbiol ; 66(4): 1405-9, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10742219

ABSTRACT

The effects of ozone at 0.25, 0.40, and 1.00 ppm on Listeria monocytogenes were evaluated in distilled water and phosphate-buffered saline. Differences in sensitivity to ozone were found to exist among the six strains examined. Greater cell death was found following exposure at lower temperatures. Early stationary-phase cells were less sensitive to ozone than mid-exponential- and late stationary-phase cells. Ozonation at 1.00 ppm of cabbage inoculated with L. monocytogenes effectively inactivated all cells after 5 min. The abilities of in vivo catalase and superoxide dismutase to protect the cells from ozone were also examined. Three listerial test strains were inactivated rapidly upon exposure to ozone. Both catalase and superoxide dismutase were found to protect listerial cells from ozone attack, with superoxide dismutase being more important than catalase in this protection.


Subject(s)
Catalase/metabolism , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Ozone/pharmacology , Superoxide Dismutase/metabolism , Brassica/microbiology , Buffers , Colony Count, Microbial , Culture Media , Listeria monocytogenes/enzymology , Listeria monocytogenes/genetics , Sodium Chloride , Temperature , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...