Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(18): 20593-20600, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38737086

ABSTRACT

It has recently been observed that the temperature(T)-dependence of KIEs in H-tunneling reactions, characterized by isotopic activation energy difference (ΔEa = EaD - EaH), is correlated to the rigidity of the tunneling ready states (TRSs) in enzymes. A more rigid system with narrowly distributed H-donor-acceptor distances (DADs) at the TRSs gives rise to a weaker T-dependence of KIEs (i.e., a smaller ΔEa). Theoreticians have attempted to develop new H-tunneling models to explain this, but none has been universally accepted. In order to further understand the observations in enzymes and provide useful data to build new theoretical models, we have studied the electronic and solvent effects on ΔEa's for the hydride-tunneling reactions of NADH/NAD+ analogues. We found that a tighter charge-transfer (CT) complex system gives rises to a smaller ΔEa, consistent with the enzyme observations. In this paper, we use the remote heavy group (R) vibrational effects to mediate the system rigidity to study the rigidity-ΔEa relationship. The specific hypothesis is that slower vibrations of a heavier remote group would broaden the DAD distributions and increase the ΔEa value. Four NADH/NAD+ systems were studied in acetonitrile but most of such heavy group vibrations do not appear to significantly increase the ΔEa. The remote heavy group vibrations in these systems may have not affected the CT complexation rigidity to a degree that can significantly increase the DADs, and further, the ΔEa values.

2.
Dalton Trans ; 44(40): 17652-9, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26394171

ABSTRACT

Solid-state (71)Ga NMR was used to investigate the structures of several heterometallic Group 13 hydroxo-aquo clusters, [Ga13-xInx (µ3-OH)6(µ2-OH)18(H2O)24](NO3)15 which are envisioned for thin film transistors. The characterization of these clusters in the solid state provides additional information in understanding the synthesis, structure and speciation of these precursors for high-quality, ultrasmooth thin films. Yet important structural information regarding these clusters - including the exact composition, isomeric structure, and coordination environments - were unknown prior to this precise NMR spectroscopy study. These molecular species, termed "Ga13-xInx", contain three types of six-coordinate metal sites, with bridging OH(-) groups and H2O as capping ligands, and we report results on Ga7In6, Ga8In5, Ga10In3, Ga11In2, Ga12In1, and Ga13. Utilizing two magnetic fields (13.9 T and 21.1 T), the solid-state NMR spectra were interpreted in conjunction with computational modeling (using CASTEP) and simulation of spectral lineshapes (using Dmfit). The metal sites are best represented as distorted octahedra, and they exhibit a range of quadrupolar couplings and asymmetry parameters, which can be addressed using longitudinal strain analysis. Until now, there has been speculation about the sites for transmetallation within the synthetic cluster community. Here, we show that Ga NMR is a powerful technique to monitor the transmetallation of In for Ga in the Ga13-xInx clusters, specifically substituting in the "outer ring" sites, and not the "core" or "middle ring".


Subject(s)
Gallium/chemistry , Transistors, Electronic , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Oxides/chemistry , Stress, Mechanical , Water/chemistry
3.
Dalton Trans ; 44(39): 16982-7006, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26212049

ABSTRACT

This Perspective article highlights some of the traditional and non-traditional analytical tools that are presently used to characterize aqueous inorganic nanoscale clusters and polyoxometalate ions. The techniques discussed in this article include nuclear magnetic resonance spectroscopy (NMR), small angle X-ray scattering (SAXS), dynamic and phase analysis light scattering (DLS and PALS), Raman spectroscopy, and quantum mechanical computations (QMC). For each method we briefly describe how it functions and illustrate how these techniques are used to study cluster species in the solid state and in solution through several representative case studies. In addition to highlighting the utility of these techniques, we also discuss limitations of each approach and measures that can be applied to circumvent such limits as it pertains to aqueous inorganic cluster characterization.

4.
J Am Chem Soc ; 137(20): 6653-61, 2015 May 27.
Article in English | MEDLINE | ID: mdl-25941865

ABSTRACT

The observed 1° isotope effect on 2° KIEs in H-transfer reactions has recently been explained on the basis of a H-tunneling mechanism that uses the concept that the tunneling of a heavier isotope requires a shorter donor-acceptor distance (DAD) than that of a lighter isotope. The shorter DAD in D-tunneling, as compared to H-tunneling, could bring about significant spatial crowding effect that stiffens the 2° H/D vibrations, thus decreasing the 2° KIE. This leads to a new physical organic research direction that examines how structure affects the 1° isotope dependence of 2° KIEs and how this dependence provides information about the structure of the tunneling ready states (TRSs). The hypothesis is that H- and D-tunneling have TRS structures which have different DADs, and pronounced 1° isotope effect on 2° KIEs should be observed in tunneling systems that are sterically hindered. This paper investigates the hypothesis by determining the 1° isotope effect on α- and ß-2° KIEs for hydride transfer reactions from various hydride donors to different carbocationic hydride acceptors in solution. The systems were designed to include the interactions of the steric groups and the targeted 2° H/D's in the TRSs. The results substantiate our hypothesis, and they are not consistent with the traditional model of H-tunneling and 1°/2° H coupled motions that has been widely used to explain the 1° isotope dependence of 2° KIEs in the enzyme-catalyzed H-transfer reactions. The behaviors of the 1° isotope dependence of 2° KIEs in solution are compared to those with alcohol dehydrogenases, and sources of the observed "puzzling" 2° KIE behaviors in these enzymes are discussed using the concept of the isotopically different TRS conformations.

SELECTION OF CITATIONS
SEARCH DETAIL
...