Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Neurooncol Adv ; 3(1): vdab152, 2021.
Article in English | MEDLINE | ID: mdl-34765974

ABSTRACT

BACKGROUND: Increased membrane trafficking is observed in numerous cancer types, including glioblastoma. Targeting the oncogenic driven acquired alterations in membrane trafficking by synthetic cationic amphiphilic small molecules has recently been shown to induce death of glioblastoma cells, although the molecular targets are unknown. METHODS: The mechanism of action of the cationic amphiphilic drug Vacquinol-1 (Vacq1)-induced cytotoxicity was investigated using cell biology, biochemistry, functional experiments, chemical biology, unbiased antibody-based post-translation modification profiling, and mass spectrometry-based chemical proteomic analysis on patient-derived glioblastoma cells. RESULTS: Vacq1 induced two types of abnormal endolysosomal vesicles, enlarged vacuoles and acidic vesicle organelles (AVOs). Mechanistically, enlarged vacuoles were formed by the impairment of lysosome reformation through the direct interaction and inhibition of calmodulin (CaM) by Vacq1, while AVO formation was induced by Vacq1 accumulation and acidification in the endosomal compartments through its activation of the v-ATPase. As a consequence of v-ATPase activation, cellular ATP consumption markedly increased, causing cellular energy shortage and cytotoxicity. This effect of Vacq1 was exacerbated by its inhibitory effects on calmodulin, causing lysosomal depletion and a failure of acidic vesicle organelle clearance. CONCLUSION: Our study identifies the targets of Vacq1 and the mechanisms underlying its selective cytotoxicity in glioblastoma cells. The dual function of Vacq1 sets in motion a glioblastoma-specific vicious cycle of ATP consumption resulting in cellular energy crisis and cell death.

2.
Oncotarget ; 9(9): 8391-8399, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29492202

ABSTRACT

Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor, and available experimental and routine therapies result in limited survival benefits. A vulnerability of GBM cells to catastrophic vacuolization and cell death, a process termed methuosis, induced by Vacquinol-1 (VQ-1) has been described earlier. In the present study, we investigate the efficacy of VQ-1 treatment in two syngeneic rat GBM models, RG2 and NS1. VQ-1 treatment affected growth of both RG2 and NS1 cells in vitro. Intracranially, significant reduction in RG2 tumor size was observed, although no effect was seen on overall survival. No survival advantage or effect on tumor size was seen in animals carrying the NS1 models compared to untreated controls. Furthermore, immunological staining of FOXP3, CD4 and CD8 showed no marked difference in immune cell infiltrate in tumor environment following treatment. Taken together, a survival advantage of VQ-1 treatment alone could not be demonstrated here, even though some effect upon tumor size was seen. Staining for immune cell markers did not indicate that VQ-1 either reduced or increased host anti-tumor immune response.

5.
Cancer Res ; 77(7): 1741-1752, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28087597

ABSTRACT

Glioma-initiating cells (GIC) are considered the underlying cause of recurrences of aggressive glioblastomas, replenishing the tumor population and undermining the efficacy of conventional chemotherapy. Here we report the discovery that inhibiting T-type voltage-gated Ca2+ and KCa channels can effectively induce selective cell death of GIC and increase host survival in an orthotopic mouse model of human glioma. At present, the precise cellular pathways affected by the drugs affecting these channels are unknown. However, using cell-based assays and integrated proteomics, phosphoproteomics, and transcriptomics analyses, we identified the downstream signaling events these drugs affect. Changes in plasma membrane depolarization and elevated intracellular Na+, which compromised Na+-dependent nutrient transport, were documented. Deficits in nutrient deficit acted in turn to trigger the unfolded protein response and the amino acid response, leading ultimately to nutrient starvation and GIC cell death. Our results suggest new therapeutic targets to attack aggressive gliomas. Cancer Res; 77(7); 1741-52. ©2017 AACR.


Subject(s)
Amino Acids/metabolism , Brain Neoplasms/drug therapy , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/physiology , Glioma/drug therapy , Potassium Channels, Calcium-Activated/antagonists & inhibitors , Unfolded Protein Response/drug effects , Animals , Biological Transport , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Death , Cell Line, Tumor , Dihydropyridines/pharmacology , Glioma/metabolism , Glioma/pathology , Humans , Mice , Mycotoxins/pharmacology , Neoplastic Stem Cells/pathology , Proteomics , Sodium/metabolism
6.
J Med Chem ; 59(18): 8577-92, 2016 09 22.
Article in English | MEDLINE | ID: mdl-27607569

ABSTRACT

Glioblastoma remains an incurable brain cancer. Drugs developed in the past 20 years have not improved the prognosis for patients, necessitating the development of new treatments. We have previously reported the therapeutic potential of the quinoline methanol Vacquinol-1 (1) that targets glioblastoma cells and induces cell death by catastrophic vacuolization. Compound 1 is a mixture of four stereoisomers due to the two adjacent stereogenic centers in the molecule, complicating further development in the preclinical setting. This work describes the isolation and characterization of the individual isomers of 1 and shows that these display stereospecific pharmacokinetic and pharmacodynamic features. In addition, we present a stereoselective synthesis of the active isomers, providing a basis for further development of this compound series into a novel experimental therapeutic for glioblastoma.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Piperidines/pharmacology , Piperidines/pharmacokinetics , Quinolines/pharmacology , Quinolines/pharmacokinetics , Animals , Brain Neoplasms/pathology , Cell Death/drug effects , Cell Line, Tumor , Glioblastoma/pathology , Humans , Mice , Models, Molecular , Stereoisomerism , Zebrafish
7.
PLoS One ; 10(3): e0121494, 2015.
Article in English | MEDLINE | ID: mdl-25807013

ABSTRACT

In Mycobacterium tuberculosis the sulfate activating complex provides a key branching point in sulfate assimilation. The complex consists of two polypeptide chains, CysD and CysN. CysD is an ATP sulfurylase that, with the energy provided by the GTPase activity of CysN, forms adenosine-5'-phosphosulfate (APS) which can then enter the reductive branch of sulfate assimilation leading to the biosynthesis of cysteine. The CysN polypeptide chain also contains an APS kinase domain (CysC) that phosphorylates APS leading to 3'-phosphoadenosine-5'-phosphosulfate, the sulfate donor in the synthesis of sulfolipids. We have determined the crystal structures of CysC from M. tuberculosis as a binary complex with ADP, and as ternary complexes with ADP and APS and the ATP mimic AMP-PNP and APS, respectively, to resolutions of 1.5 Å, 2.1 Å and 1.7 Å, respectively. CysC shows the typical APS kinase fold, and the structures provide comprehensive views of the catalytic machinery, conserved in this enzyme family. Comparison to the structure of the human homolog show highly conserved APS and ATP binding sites, questioning the feasibility of the design of specific inhibitors of mycobacterial CysC. Residue Cys556 is part of the flexible lid region that closes off the active site upon substrate binding. Mutational analysis revealed this residue as one of the determinants controlling lid closure and hence binding of the nucleotide substrate.


Subject(s)
Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/metabolism , Peptides/chemistry , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Sulfates/metabolism , Adenosine Phosphosulfate/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Catalytic Domain , Molecular Sequence Data , Nucleotides/metabolism , Peptides/metabolism , Phosphoadenosine Phosphosulfate/metabolism , Protein Structure, Tertiary , Sequence Alignment , Sulfate Adenylyltransferase/chemistry , Sulfate Adenylyltransferase/metabolism
8.
Nature ; 508(7495): 215-21, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24695224

ABSTRACT

Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bind in the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.


Subject(s)
DNA Repair Enzymes/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/metabolism , Nucleotides/metabolism , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Animals , Catalytic Domain , Cell Death/drug effects , Cell Survival/drug effects , Crystallization , DNA Damage , DNA Repair Enzymes/chemistry , DNA Repair Enzymes/metabolism , Deoxyguanine Nucleotides/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Female , Humans , Male , Mice , Models, Molecular , Molecular Conformation , Molecular Targeted Therapy , Neoplasms/pathology , Oxidation-Reduction/drug effects , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/metabolism , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Pyrophosphatases/antagonists & inhibitors , Reproducibility of Results , Xenograft Model Antitumor Assays , Nudix Hydrolases
9.
Cell ; 157(2): 313-328, 2014 04 10.
Article in English | MEDLINE | ID: mdl-24656405

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer with marginal life expectancy. Based on the assumption that GBM cells gain functions not necessarily involved in the cancerous process, patient-derived glioblastoma cells (GCs) were screened to identify cellular processes amenable for development of targeted treatments. The quinine-derivative NSC13316 reliably and selectively compromised viability. Synthetic chemical expansion reveals delicate structure-activity relationship and analogs with increased potency, termed Vacquinols. Vacquinols stimulate death by membrane ruffling, cell rounding, massive macropinocytic vacuole accumulation, ATP depletion, and cytoplasmic membrane rupture of GCs. The MAP kinase MKK4, identified by a shRNA screen, represents a critical signaling node. Vacquinol-1 displays excellent in vivo pharmacokinetics and brain exposure, attenuates disease progression, and prolongs survival in a GBM animal model. These results identify a vulnerability to massive vacuolization that can be targeted by small molecules and point to the possible exploitation of this process in the design of anticancer therapies.


Subject(s)
Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Glioblastoma/drug therapy , Glioblastoma/pathology , Piperidines/pharmacology , Quinolines/pharmacology , Small Molecule Libraries/pharmacology , Animals , Cell Death/drug effects , Heterografts , Humans , Hydroxyquinolines/pharmacology , MAP Kinase Kinase 4/metabolism , Mice , Neoplasm Transplantation , Pinocytosis/drug effects , Vacuoles/metabolism , Zebrafish
11.
J Med Chem ; 56(24): 9861-73, 2013 Dec 27.
Article in English | MEDLINE | ID: mdl-24283924

ABSTRACT

Novel methods for treatment of African trypanosomiasis, caused by infection with Trypanosoma brucei are needed. Cordycepin (3'-deoxyadenosine, 1a) is a powerful trypanocidal compound in vitro but is ineffective in vivo because of rapid metabolic degradation by adenosine deaminase (ADA). We elucidated the structural moieties of cordycepin required for trypanocidal activity and designed analogues that retained trypanotoxicity while gaining resistance to ADA-mediated metabolism. 2-Fluorocordycepin (2-fluoro-3'-deoxyadenosine, 1b) was identified as a selective, potent, and ADA-resistant trypanocidal compound that cured T. brucei infection in mice. Compound 1b is transported through the high affinity TbAT1/P2 adenosine transporter and is a substrate of T. b. brucei adenosine kinase. 1b has good preclinical properties suitable for an oral drug, albeit a relatively short plasma half-life. We present a rapid and efficient synthesis of 2-halogenated cordycepins, also useful synthons for the development of additional novel C2-substituted 3'-deoxyadenosine analogues to be evaluated in development of experimental therapeutics.


Subject(s)
Deoxyadenosines/pharmacology , Trypanocidal Agents/pharmacology , Trypanosomiasis, African/drug therapy , Animals , Cell Survival/drug effects , Cells, Cultured , Deoxyadenosines/chemical synthesis , Deoxyadenosines/chemistry , Dose-Response Relationship, Drug , Humans , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei rhodesiense/drug effects
12.
Antimicrob Agents Chemother ; 57(2): 1012-8, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23254423

ABSTRACT

New drugs for the treatment of human African trypanosomiasis are urgently needed. A number of 2-aminopyrazines/2-aminopyridines were identified as promising leads following a focused screen of 5,500 compounds for Trypanosoma brucei subsp. brucei viability. Described compounds are trypanotoxic in the submicromolar range and show comparably low cytotoxicity on representative mammalian cell lines. Specifically, 6-([6-fluoro-3,4-dihydro-2H-1-benzopyran-4-yl)]oxy)-N-(piperidin-4-yl)pyrazin-2-amine (CBK201352) is trypanotoxic for T. brucei subsp. brucei, T. brucei subsp. gambiense, and T. brucei subsp. rhodesiense and is nontoxic to mammalian cell lines, and in vitro preclinical assays predict promising pharmacokinetic parameters. Mice inoculated intraperitoneally (i.p.) with 25 mg/kg CBK201352 twice daily for 10 days, starting on the day of infection with T. brucei subsp. brucei, show complete clearance of parasites for more than 90 days. Thus, CBK201352 and related analogs are promising leads for the development of novel treatments for human African trypanosomiasis.


Subject(s)
Aminopyridines/pharmacology , Benzopyrans/pharmacology , Piperidines/pharmacology , Pyrazines/pharmacology , Trypanocidal Agents/pharmacology , Trypanosomiasis, African/drug therapy , Aminopyridines/therapeutic use , Animals , Benzopyrans/therapeutic use , Cell Line , Humans , Mice , Mice, Inbred C57BL , Piperidines/therapeutic use , Pyrazines/therapeutic use , Trypanocidal Agents/therapeutic use , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei gambiense/drug effects , Trypanosoma brucei rhodesiense/drug effects , Trypanosomiasis, African/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...