Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Biobehav Rev ; 59: 111-40, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26475995

ABSTRACT

Mood and anxiety disorders are prevalent conditions affecting one out of four people during lifetime. The development of high validity animal models to study these disorders has been a major challenge in the past. When considering experimental approaches for studying affective disorders, the social defeat paradigm has been shown to have etiological, predictive and face validity. Here, we explain the general principle of social defeat stress paradigms, with a strong focus on the resident-intruder model and compare different experimental settings as published to date. We discuss behavioral changes described in defeated animals as well as changes in the animal's physiological parameters. In addition, we provide an overview of the molecular adaptations that are found in animals subjected to defeat stress, with special attention to neural circuits and neuroendocrine signaling. Defeat produces specific behaviors resembling the signs and symptoms of humans with affective disorders, such as anhedonia, social avoidance, despair and anxiety. These can be linked to a wide range of physiological changes-ranging from cardiovascular changes to alterations in the immune system- or by disturbances in specific neurotransmitter systems, in particular serotonin and dopamine. The defeat stress model thus impacts on several functional domains of behavior and may mimic cardinal features of a multitude of psychiatric disorders including depression, post-traumatic stress disorder and schizophrenia. This manuscript critically reviews the core findings, strengths and limitations of the range of animal studies in this field and provides future perspectives.


Subject(s)
Anxiety Disorders/psychology , Behavior, Animal , Depression/psychology , Social Behavior , Stress, Psychological/psychology , Animals , Anxiety Disorders/genetics , Disease Models, Animal , Humans
2.
Psychoneuroendocrinology ; 51: 547-56, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25445743

ABSTRACT

The enzyme DNA methyltransferase 3a (Dnmt3a) is crucially involved in DNA methylation and recent studies have demonstrated that Dnmt3a is functionally involved in mediating and moderating the impact of environmental exposures on gene expression and behavior. Findings in rodents have suggested that DNA methylation is involved in regulating neuronal proliferation and differentiation. So far, it has been shown that chronic social defeat might influence neurogenesis, while susceptibility to social defeat stress is dependent on gene expression changes in the nucleus accumbens and the mesolimbic dopaminergic system. However, the role of Dnmt3a herein has not been fully characterized. Our earlier immunohistochemical work has revealed the existence of two types of Dnmt3a-immunoreactive cells in the mouse hippocampus, of which one represents a distinct type with intense Dnmt3a-immunoreactivity (Dnmt3a type II cells) co-localizing with a marker of recent proliferation. Based on this, we hypothesize that behavioral susceptibility to chronic social defeat stress is linked to (i) Dnmt3a protein levels in the nucleus accumbens and hippocampus, and (ii) to the density of Dnmt3a type II cells in the hippocampal dentate gyrus. While no differences were found in global levels of Dnmt3a protein expression in the nucleus accumbens and hippocampus, our stereological quantifications indicated a significantly increased density of Dnmt3a type II cells in the dentate gyrus of animals resilient to social defeat stress compared to susceptible and control animals. Further characterization of the Dnmt3a type II cells revealed that these cells were mostly doublecortin (25%) or NeuN (60%) immunopositive, thus defining them as immature and mature neurons. Moreover, negative associations between the density of Dnmt3a type II cells and indices of depressive-like behavior in the sucrose intake and forced swim test were found. These correlational data suggest that DNA methylation via Dnmt3a in the hippocampus co-regulates adaptivity of the behavioral response to chronic social defeat stress, and set the stage for further experimental studies testing a mediating role of Dnmt3a in experience-dependent plasticity, neurogenesis and (mal) adaptation to severe stressors.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , Dentate Gyrus/metabolism , Dominance-Subordination , Neurons/metabolism , Stress, Psychological/metabolism , Animals , Behavior, Animal/physiology , Corticosterone/blood , DNA Methylation , DNA Methyltransferase 3A , Immunohistochemistry , Male , Mice
3.
J Neurochem ; 113(6): 1369-86, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20236389

ABSTRACT

The Goodpasture antigen-binding protein (GPBP) and its splice variant the ceramide transporter (CERT) are multifunctional proteins that have been found to play important roles in brain development and biology. However, the function of GPBP and CERT is controversial because of their involvement in two apparently unrelated research fields: GPBP was initially isolated as a protein associated with collagen IV in patients with the autoimmune disease Goodpasture syndrome. Subsequently, a splice variant lacking a serine-rich domain of 26 amino acids (GPBPDelta26) was found to mediate the cytosolic transport of ceramide and was therefore (re)named CERT. The two splice forms likely carry out different functions in specific sub-cellular localizations. Selective GPBP knockdown induces extensive apoptosis and tissue loss in the brain of zebrafish. GPBP/GPBPDelta26 knock-out mice die as a result of structural and functional defects in endoplasmic reticulum and mitochondria. Because both mitochondria and ceramide play an important role in many biological events that regulate neuronal differentiation, cellular senescence, proliferation and cell death, we propose that GPBP and CERT are pivotal in neurodegenerative processes. In this review, we discuss the current state of knowledge on GPBP and CERT, including the molecular and biochemical characterization of GPBP in the field of autoimmunity as well as the fundamental research on CERT in ceramide transport, biosynthesis, localization, metabolism and cell homeostasis.


Subject(s)
Protein Serine-Threonine Kinases/classification , Protein Serine-Threonine Kinases/physiology , Animals , Autoantigens/metabolism , Central Nervous System/metabolism , Collagen Type IV/metabolism , Humans , Models, Biological , Neurodegenerative Diseases/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Splicing/genetics
4.
J Chem Neuroanat ; 38(2): 97-105, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19555756

ABSTRACT

The Goodpasture antigen-binding protein (GPBP) plays a critical role in brain development. Knockdown of GPBP leads to loss of myelinated tracts in the central nervous system and to extensive apoptosis in the brain during early embryogenesis. GPBP was initially identified as a protein associated with the autoantigen in Goodpasture autoimmune syndrome, where it was shown to be a kinase that regulates type IV collagen organization. GPBP isoforms bind and transport ceramide from the endoplasmic reticulum to the Golgi apparatus and are therefore also known as ceramide transporters (CERT). Ceramide dysregulation is involved in autoimmunity and neurodegenerative disorders. In order to analyze the possible role of GPBP in neuroinflammation and neurodegeneration we studied the basal GPBP expression in normal rat brain. High levels of immunoreactivity were detected in neurons of the cerebral cortex, hippocampal formation, the basal ganglia, the olfactory bulb and nuclei of the thalamus, the hypothalamus and the septal area. Lower expression levels of GPBP were observed widely throughout the brain, suggesting that GPBP plays an important role in central nervous system neuron function.


Subject(s)
Brain/enzymology , Ceramides/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Blotting, Western , Brain/anatomy & histology , Brain Mapping , Diencephalon/anatomy & histology , Diencephalon/enzymology , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Immunohistochemistry , Male , Rats , Rats, Wistar , Telencephalon/anatomy & histology , Telencephalon/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...