Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 69(13): 3181-3194, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29474730

ABSTRACT

Following advances in genetics, genomics, and phenotyping, trait selection in breeding is limited by our ability to understand interactions within the plant and with the environment, and to identify traits of most relevance to the target population of environments. We propose an integrated approach that combines insights from crop modelling, physiology, genetics, and breeding to characterize traits valuable for yield gain in the target population of environments, develop relevant high-throughput phenotyping platforms, and identify genetic controls and their value in production environments. This paper uses transpiration efficiency (biomass produced per unit of water used) as an example of a complex trait of interest to illustrate how the approach can guide modelling, phenotyping, and selection in a breeding programme. We believe that this approach, by integrating insights from diverse disciplines, can increase the resource use efficiency of breeding programmes for improving yield gains in target populations of environments.


Subject(s)
Edible Grain/genetics , Life History Traits , Phenotype , Plant Breeding , Models, Genetic
2.
Theor Appl Genet ; 127(10): 2253-66, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25163934

ABSTRACT

KEY MESSAGE: A QTL model for the genetic control of tillering in sorghum is proposed, presenting new opportunities for sorghum breeders to select germplasm with tillering characteristics appropriate for their target environments. Tillering in sorghum can be associated with either the carbon supply-demand (S/D) balance of the plant or an intrinsic propensity to tiller (PTT). Knowledge of the genetic control of tillering could assist breeders in selecting germplasm with tillering characteristics appropriate for their target environments. The aims of this study were to identify QTL for tillering and component traits associated with the S/D balance or PTT, to develop a framework model for the genetic control of tillering in sorghum. Four mapping populations were grown in a number of experiments in south east Queensland, Australia. The QTL analysis suggested that the contribution of traits associated with either the S/D balance or PTT to the genotypic differences in tillering differed among populations. Thirty-four tillering QTL were identified across the populations, of which 15 were novel to this study. Additionally, half of the tillering QTL co-located with QTL for component traits. A comparison of tillering QTL and candidate gene locations identified numerous coincident QTL and gene locations across populations, including the identification of common non-synonymous SNPs in the parental genotypes of two mapping populations in a sorghum homologue of MAX1, a gene involved in the control of tiller bud outgrowth through the production of strigolactones. Combined with a framework for crop physiological processes that underpin genotypic differences in tillering, the co-location of QTL for tillering and component traits and candidate genes allowed the development of a framework QTL model for the genetic control of tillering in sorghum.


Subject(s)
Chromosome Mapping , Quantitative Trait Loci , Sorghum/genetics , Breeding , Environment , Genetic Linkage , Genotype , Models, Statistical , Phenotype , Sorghum/growth & development
3.
Theor Appl Genet ; 124(1): 97-109, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21938475

ABSTRACT

Nodal root angle in sorghum influences vertical and horizontal root distribution in the soil profile and is thus relevant to drought adaptation. In this study, we report for the first time on the mapping of four QTL for nodal root angle (qRA) in sorghum, in addition to three QTL for root dry weight, two for shoot dry weight, and three for plant leaf area. Phenotyping was done at the six leaf stage for a mapping population (n = 141) developed by crossing two inbred sorghum lines with contrasting root angle. Nodal root angle QTL explained 58.2% of the phenotypic variance and were validated across a range of diverse inbred lines. Three of the four nodal root angle QTL showed homology to previously identified root angle QTL in rice and maize, whereas all four QTL co-located with previously identified QTL for stay-green in sorghum. A putative association between nodal root angle QTL and grain yield was identified through single marker analysis on field testing data from a subset of the mapping population grown in hybrid combination with three different tester lines. Furthermore, a putative association between nodal root angle QTL and stay-green was identified using data sets from selected sorghum nested association mapping populations segregating for root angle. The identification of nodal root angle QTL presents new opportunities for improving drought adaptation mechanisms via molecular breeding to manipulate a trait for which selection has previously been very difficult.


Subject(s)
Droughts , Quantitative Trait Loci , Sorghum/genetics , Adaptation, Biological , Chromosome Mapping , Genetic Linkage , Phenotype , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Roots/anatomy & histology , Plant Roots/genetics , Plant Roots/growth & development , Principal Component Analysis , Sorghum/anatomy & histology , Sorghum/growth & development
4.
J Exp Bot ; 62(6): 1743-55, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21421705

ABSTRACT

Genotype-environment interactions (GEI) limit genetic gain for complex traits such as tolerance to drought. Characterization of the crop environment is an important step in understanding GEI. A modelling approach is proposed here to characterize broadly (large geographic area, long-term period) and locally (field experiment) drought-related environmental stresses, which enables breeders to analyse their experimental trials with regard to the broad population of environments that they target. Water-deficit patterns experienced by wheat crops were determined for drought-prone north-eastern Australia, using the APSIM crop model to account for the interactions of crops with their environment (e.g. feedback of plant growth on water depletion). Simulations based on more than 100 years of historical climate data were conducted for representative locations, soils, and management systems, for a check cultivar, Hartog. The three main environment types identified differed in their patterns of simulated water stress around flowering and during grain-filling. Over the entire region, the terminal drought-stress pattern was most common (50% of production environments) followed by a flowering stress (24%), although the frequencies of occurrence of the three types varied greatly across regions, years, and management. This environment classification was applied to 16 trials relevant to late stages testing of a breeding programme. The incorporation of the independently-determined environment types in a statistical analysis assisted interpretation of the GEI for yield among the 18 representative genotypes by reducing the relative effect of GEI compared with genotypic variance, and helped to identify opportunities to improve breeding and germplasm-testing strategies for this region.


Subject(s)
Droughts , Environment , Genotype , Models, Biological , Triticum/physiology , New South Wales , Queensland , Water/physiology
5.
Ann Bot ; 90(1): 87-98, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12125776

ABSTRACT

Most studies of tiller development have not related the physiological and morphological features of each culm to its subsequent fertility. This introduces problems when trying to account for the effects of tillering on yield in crop models. The objective of this study was to detect the most likely early determinants of tiller fertility in sorghum by identifying hierarchies for emergence, fertility and grain number of tillers over a wide range of assimilate availabilities. Emergence, phenology, leaf area development and dry weight partitioning were quantified weekly for individual tillers and main culms of tillering and uniculm plants grown at one of four densities, from two to 16 plants m(-2). For a given plant in any given density, the same tiller hierarchy applied for emergence of tillers, fertility of the emerged tillers and their subsequent grain number. These results were observed over a range of tiller fertility rates (from 7 to 91%), fertile tiller number per plant at maturity (from 0.2 to 4.7), and tiller contribution to grain yield (from 5 to 78 %). Tiller emergence was most probably related to assimilate supply and light quality. Development, fertility and contribution to yield of a specific tiller were highly dependent on growing conditions at the time of tiller emergence, particularly via early leaf area development of the tiller, which affected its subsequent leaf area accumulation. Assimilate availability in the main culm at the time of tiller emergence was the most likely early determinant of subsequent tiller fertility in this study.


Subject(s)
Edible Grain/physiology , Plant Leaves/growth & development , Edible Grain/growth & development
6.
Ann Bot ; 90(1): 99-110, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12125777

ABSTRACT

The prediction of tillering is poor or absent in existing sorghum crop models even though fertile tillers contribute significantly to grain yield. The objective of this study was to identify general quantitative relationships underpinning tiller dynamics of sorghum for a broad range of assimilate availabilities. Emergence, phenology, leaf area development and fertility of individual main culms and tillers were quantified weekly in plants grown at one of four plant densities ranging from two to 16 plants m(-2). On any given day, a tiller was considered potentially fertile (a posteriori) if its number of leaves continued to increase thereafter. The dynamics of potentially fertile tiller number per plant varied greatly with plant density, but could generally be described by three determinants, stable across plant densities: tiller emergence rate aligned with leaf ligule appearance rate; cessation of tiller emergence occurred at a stable leaf area index; and rate of decrease in potentially fertile tillers was linearly related to the ratio of realized to potential leaf area growth. Realized leaf area growth is the measured increase in leaf area, whereas potential leaf area growth is the estimated increase in leaf area if all potentially fertile tillers were to continue to develop. Procedures to predict this ratio, by estimating realized leaf area per plant from intercepted radiation and potential leaf area per plant from the number and type of developing axes, are presented. While it is suitable for modelling tiller dynamics in grain sorghum, this general framework needs to be validated by testing it in different environments and for other cultivars.


Subject(s)
Edible Grain/physiology , Edible Grain/growth & development , Plant Leaves/growth & development , Population Dynamics
7.
Plant Physiol ; 92(2): 534-7, 1990 Feb.
Article in English | MEDLINE | ID: mdl-16667310

ABSTRACT

Carbon-isotope discrimination (Delta) is used to distinguish between different photosynthetic pathways. It has also been shown that variation in Delta occurs among varieties of C(3) species, but not as yet, in C(4) species. We now report that Delta also varies among genotypes of sorghum (Sorghum bicolor Moench), a C(4) species. The discrimination in leaves of field-grown plants of 12 diverse genotypes of sorghum was measured and compared with their grain yields. Discrimination varied significantly among genotypes, and there was a significant negative correlation between grain yield and Delta. The variation in Delta may be caused by genetic differences in either leakiness of the bundle-sheath cells or by differences in the ratio of assimilation rate to stomatal conductance. At the leaf level, the former should be related to light-use efficiency of carbon fixation and the latter should be related to transpiration efficiency. Both could relate to the yield of the crop.

SELECTION OF CITATIONS
SEARCH DETAIL
...