Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 150: 104753, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31284099

ABSTRACT

During accidental crude oil spills and permitted discharges of produced water into the marine environment, a large fraction of naturally occurring oil components will be contained in micron-sized oil droplets. Toxicity is assumed to be associated with the dissolved fraction of oil components, however the potential contribution of oil droplets to toxicity is currently not well known. In the present work we wanted to evaluate the contribution of oil droplets to effects on normal development of Atlantic cod (Gadus morhua) through exposing embryos for 96 h to un-filtered (dispersions containing droplets) and filtered (water soluble fractions) dispersions in a flow-through system at dispersion concentrations ranging from 0.14 to 4.34 mg oil/L. After exposure, the embryos were kept in clean seawater until hatch when survival, development and morphology were assessed. The experiment was performed at two different stages of embryonic development to cover two potentially sensitive stages (gastrulation and organogenesis). Exposure of cod embryos to crude oil dispersions caused acute and delayed toxicity, including manifestation of morphological deformations in hatched larvae. Oil droplets appear to contribute to some of the observed effects including mortality, larvae condition (standard length, body surface, and yolk sac size), spinal deformations as well as alterations in craniofacial and jaw development. The timing of exposure may be essential for the development of effects as higher acute mortality was observed when embryos were exposed from the start of gastrulation (Experiment 1) than when exposed during organogenesis (Experiment 2). Even though low mortality was observed when exposed during organogenesis, concentration-dependent mortality was observed during recovery.


Subject(s)
Embryonic Development/drug effects , Gadus morhua , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Embryo, Nonmammalian/drug effects , Fishes , Petroleum/toxicity , Water Pollutants, Chemical/toxicity
2.
J Toxicol Environ Health A ; 77(9-11): 535-49, 2014.
Article in English | MEDLINE | ID: mdl-24754390

ABSTRACT

Ocean acidification poses an ongoing threat to marine organisms, and early life stages are believed to be particularly sensitive. The boreal calanoid copepod Calanus finmarchicus seasonally dominates the standing stock of zooplankton in the northern North Sea and North Atlantic, and due to its size and abundance is considered an ecological key species linking energy from primary producers to higher trophic levels. To examine whether the early stages of C. finmarchicus are particularly vulnerable to elevated levels of CO2, eggs and nauplii were subjected to different levels of CO2-acidified seawater for 1 wk. The first experiment, with eggs as the starting point, revealed no marked effect on hatching success, but a significant reduction in nauplii survival during incubation at 8800 ppm CO2. In addition, a significant decrease in ontogenetic development rate during incubation at 8800 ppm CO2 was observed in this experiment. In the second experiment, where third-stage nauplii represented the starting point, no significant effects on ontogenetic development and survival following exposure to pCO2 ≥ 7700 ppm were observed. Data suggest that the two first nauplii stages, which are fed endogenously, may be more vulnerable and therefore likely to represent the "bottleneck" for this species in a more acidic ocean. However, the absence of significant effects in the most sensitive stages during exposure to 2800 ppm CO2, a level that is well above worst-case scenario predictions for year 2300 (approximately 2000 ppm CO2), suggests that this species may be generally robust to direct effects of ocean acidification.


Subject(s)
Carbon Dioxide/analysis , Copepoda/drug effects , Copepoda/growth & development , Acids/analysis , Animals , Dose-Response Relationship, Drug , Hydrogen-Ion Concentration , North Sea , Seawater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...