Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters










Publication year range
1.
J Org Chem ; 89(12): 9092-9097, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38841830

ABSTRACT

Shortwave infrared (SWIR, 1000-1700 nm) absorbing and emitting dyes are needed for infrared diodes and sensors used in a wide variety of industrial and medical applications. Herein, an electron-withdrawing phosphine oxide (P═O) substituted xanthene is coupled with strong indolizine donors to produce a SWIR absorbing (λabs = 1294 nm in DCM) and emitting (λemis = 1450 nm in DCM) dye called PRos1450. The unique properties of this dye are characterized via photophysical, electrochemical, and computational analyses.

2.
Nat Chem ; 16(6): 970-978, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38528102

ABSTRACT

In vivo fluorescence imaging in the shortwave infrared (SWIR, 1,000-1,700 nm) and extended SWIR (ESWIR, 1,700-2,700 nm) regions has tremendous potential for diagnostic imaging. Although image contrast has been shown to improve as longer wavelengths are accessed, the design and synthesis of organic fluorophores that emit in these regions is challenging. Here we synthesize a series of silicon-RosIndolizine (SiRos) fluorophores that exhibit peak emission wavelengths from 1,300-1,700 nm and emission onsets of 1,800-2,200 nm. We characterize the fluorophores photophysically (both steady-state and time-resolved), electrochemically and computationally using time-dependent density functional theory. Using two of the fluorophores (SiRos1300 and SiRos1550), we formulate nanoemulsions and use them for general systemic circulatory SWIR fluorescence imaging of the cardiovascular system in mice. These studies resulted in high-resolution SWIR images with well-defined vasculature visible throughout the entire circulatory system. This SiRos scaffold establishes design principles for generating long-wavelength emitting SWIR and ESWIR fluorophores.


Subject(s)
Fluorescent Dyes , Infrared Rays , Optical Imaging , Silicon , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Silicon/chemistry , Animals , Mice , Indolizines/chemistry , Indolizines/chemical synthesis , Density Functional Theory
3.
RSC Adv ; 14(13): 9254-9261, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38505385

ABSTRACT

Latent bloodstain detection remains imperative for crime scene investigators. Widely used luminol offers high sensitivity to human blood, but can produce untrustworthy results from a bleach-cleaned crime scene or in a room not dark enough. Furthermore, dark pigments impede imaging bloodstains covered by dark materials with previously reported bloodstain detection agents. A novel on/off human albumin-sensing dye (SO3C7) is reported herein with a longer emission wavelength (942 nm) than previous materials that allows imaging behind ∼5 mm of black fabric. The switch-on emission of SO3C7 is selective and sensitive to human albumin and lasts longer than luminol (24-48 hours). Emission studies, transient absorption spectra (TAS), and near-infrared (NIR) photographs herein describe the albumin sensing properties of the dye.

4.
J Mater Chem C Mater ; 12(12): 4369-4383, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38525159

ABSTRACT

Fluorescence bioimaging with near-infrared II (NIR-II) emissive organic fluorophores has proven to be a viable noninvasive diagnostic technique. However, there is still the need for the development of fluorophores that possess increased stability as well as functionalities that impart stimuli responsiveness. Through strategic design, we can synthesize fluorophores that possess not only NIR-II optical profiles but also pH-sensitivity and the ability to generate heat upon irradiation. In this work, we employ a donor-acceptor-donor (D-A-D) design to synthesize a series of NIR-II fluorophores. Here we use thienothiadiazole (TTD) as the acceptor, 3-hexylthiophene (HexT) as the π-spacer and vary the alkyl amine donor units: N,N-dimethylaniline (DMA), phenylpiperidine (Pip), and phenylmorpholine (Morp). Spectroscopic analysis shows that all three derivatives exhibit emission in the NIR-II region with λemimax ranging from 1030 to 1075 nm. Upon irradiation, the fluorophores exhibited noticeable heat generation through non-radiative processes. The ability to generate heat indicates that these fluorophores will act as theranostic (combination therapeutic and diagnostic) agents in which simultaneous visualization and treatment can be performed. Additionally, biosensing capabilities were supported by changes in the absorbance properties while under acidic conditions as a result of protonation of the alkyl amine donor units. The fluorophores also show minimal toxicity in a human mammary cell line and with murine red blood cells. Overall, initial results indicate viable NIR-II materials for multiple biomedical applications.

5.
J Org Chem ; 89(5): 2825-2839, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38334085

ABSTRACT

Fluorescence-based biological imaging in the shortwave infrared (SWIR, 1000-1700 nm) is an attractive replacement for modern in vivo imaging techniques currently employed in both medical and research settings. Xanthene-based fluorophores containing heterocycle donors have recently emerged as a way to access deep SWIR emitting fluorophores. A concern for xanthene-based SWIR fluorophores though is chemical stability toward ambient nucleophiles due to the high electrophilicity of the cationic fluorophore core. Herein, a series of SWIR emitting silicon-rosindolizine (SiRos) fluorophores with emission maxima >1300 nm (up to 1550 nm) are synthesized. The SiRos fluorophore photophysical properties and chemical stability toward nucleophiles are examined through systematic derivatization of the silicon-core alkyl groups, indolizine donor substitution, and the use of o-tolyl or o-xylyl groups appended to the fluorophore core. The dyes are studied via absorption spectroscopy, steady-state emission spectroscopy, solution-based cyclic voltammetry, time-dependent density functional theory (TD-DFT) computational analysis, X-ray diffraction crystallography, and relative chemical stability over time. Optimal chemical stability is observed via the incorporation of the 2-ethylhexyl silicon substituent and the o-xylyl group to protect the core of the fluorophore.

6.
RSC Adv ; 14(10): 6521-6531, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38390512

ABSTRACT

Strong molecular photooxidants are important in many disciplines including organic synthesis and renewable energy. In these fields, strongly oxidizing chromophores are employed to drive various transformations from challenging bond formations to energy storage systems. A range of photooxidant strengths are needed to drive these processes. A series of 8 symmetrically bisarylated 5,6-dicyano[2,1,3]benzothiadiazole (DCBT) dyes were studied for their tunability toward breadth of light absorption and photooxidant strength. The dye oxidation strength and light absorption tunability is the result of appending various aryl substituents on the periphery of the DCBT core which shows remarkable tunability of the final chromophore. The dyes are studied via steady-state absorption and emission, time-correlated single photon counting, computational analysis, and cyclic voltammetry. In changing the peripheral aryl substituents via electronics, sterics, and π-conjugation length, a series of dyes are arrived at with a dramatic 1.5 eV range in oxidizing strength and >200 nm (0.95 eV) absorption maxima tunability. Furthermore, two dyes in the series exhibit strong oxidizing strength while still approaching red light absorbance (>650 nm onset) which provides unique opportunities for the use of lower energy light to affect chemical transformations. Ultimately, this series provides options for photooxidations that allow for energetic tuning and selectivity for a given chemical transformation.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123133, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37473664

ABSTRACT

Cannabinoids, a class of molecules specific to the cannabis plant, are some of the most relevant molecules under study today due to their widespread use and varying legal status. Here, we present Raman spectra of a series of eleven cannabinoids and compare them to simulated spectra from density functional theory computations. The studied cannabinoids include three cannabinoid acids (Δ9-THC acid, CBD acid, and CBG acid) and eight neutral ones (Δ9-THC, CBD, CBG, CBDVA, CBDV, Δ8-THC, CBN and CBC). All cannabinoids have been isolated from cannabis plant gown at the University of Mississippi. The data presented in this work represents the most resolved experimental and highest-level simulated spectra available to date for each cannabinoid. All cannabinoids displayed higher peak separation in the experimental spectra than CBGA, which is most likely attributable to physical composition of the samples. The overall agreement between the experimental and simulated spectra is good, however for certain vibrational modes, especially those in the -OH stretching region, deviations are observed due to hydrogen bonding, suggesting that the OH stretching region is a good probe for decarboxylation reactions in these and related species.


Subject(s)
Cannabinoids , Cannabis , Cannabinoids/chemistry , Dronabinol , Spectrum Analysis, Raman , Density Functional Theory , Cannabis/chemistry
8.
Langmuir ; 39(31): 10806-10819, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37501336

ABSTRACT

Due to its abundance in blood, a great deal of research has been undertaken to develop efficient biosensors for serum albumin and provide insight into the interactions that take place between these biosensing molecules and the protein. Near-infrared (NIR, >700 nm) organic dyes have been shown to be effective biosensors of serum albumin, but their effectiveness is diminished in whole blood. Herein, it is shown that an NIR sulfonate indolizine-donor-based squaraine dye, SO3SQ, can be strengthened as a biosensor of albumin through the addition of biocompatible ionic liquids (ILs). Specifically, the IL choline glycolate (1:1), at a concentration of 160 mM, results in the enhanced fluorescence emission ("switch-on") of the dye in the presence of blood. The origin of the fluorescence enhancement was investigated via methods, including DLS, ITC, and molecular dynamics. Further, fluorescence measurements were conducted to see the impact the dye-IL system had on the fluorescence of the tryptophan residue of human serum albumin (HSA), as well as to determine its apparent association constants in relation to albumin. Circular dichroism (CD) spectroscopy was used to provide evidence that the dye-IL system does not alter the secondary structures of albumin or DNA. Our results suggest that the enhanced fluorescence of the dye in the presence of IL and blood is due to diversification of binding sites in albumin, controlled by the interaction of the IL-dye-albumin complex.


Subject(s)
Ionic Liquids , Humans , Ionic Liquids/chemistry , Serum Albumin/chemistry , Serum Albumin, Human/chemistry , Binding Sites , Tryptophan/chemistry , Spectrometry, Fluorescence/methods , Circular Dichroism
9.
ACS Omega ; 8(27): 24513-24523, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37457472

ABSTRACT

As fluorescence bioimaging has increased in popularity, there have been numerous reports on designing organic fluorophores with desirable properties amenable to perform this task, specifically fluorophores with emission in the near-infrared II (NIR-II) region. One such strategy is to utilize the donor-π-acceptor-π-donor approach (D-π-A-π-D), as this allows for control of the photophysical properties of the resulting fluorophores through modulation of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels. Herein, we illustrate the properties of thienothiadiazole (TTD) as an effective acceptor moiety in the design of NIR emissive fluorophores. TTD is a well-known electron-deficient species, but its use as an acceptor in D-π-A-π-D systems has not been extensively studied. We employed TTD as an acceptor unit in a series of two fluorophores and characterized the photophysical properties through experimental and computational studies. Both fluorophores exhibited emission maxima in the NIR-I that extends into the NIR-II. We also utilized electron paramagnetic resonance (EPR) spectroscopy to rationalize differences in the measured quantum yield values and demonstrated, to our knowledge, the first experimental evidence of radical species on a TTD-based small-molecule fluorophore. Encapsulation of the fluorophores using a surfactant formed polymeric nanoparticles, which were studied by photophysical and morphological techniques. The results of this work illustrate the potential of TTD as an acceptor in the design of NIR-II emissive fluorophores for fluorescence bioimaging applications.

10.
Angew Chem Int Ed Engl ; 62(13): e202214855, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36722146

ABSTRACT

Shortwave infrared (SWIR) dyes are characterized by their ability to absorb light from 900 to 1400 nm, which is ideal for deep tissue imaging owing to minimized light scattering and interference from endogenous pigments. An approach to access such molecules is to tune the photophysical properties of known near-infrared dyes. Herein, we report the development of a series of easily accessible (three steps) SWIR xanthene dyes based on a dibenzazepine donor conjugated to thiophene (SCR-1), thienothiophene (SCR-2), or bithiophene (SCR-3). We leverage the fact that SCR-1 undergoes a bathochromic shift when aggregated for in vivo studies by developing a ratiometric nanoparticle for NO (rNP-NO), which we employed to successfully visualize pathological levels of nitric oxide in a drug-induced liver injury model via deep tissue SWIR photoacoustic (PA) imaging. Our work demonstrates how easily this dye series can be utilized as a component in nanosensor designs for imaging studies.


Subject(s)
Nitric Oxide , Photoacoustic Techniques , Photoacoustic Techniques/methods , Xanthenes , Diagnostic Imaging/methods , Fluorescent Dyes , Optical Imaging
11.
Molecules ; 28(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36770954

ABSTRACT

Fluorescent organic dyes that absorb and emit in the near-infrared (NIR, 700-1000 nm) and shortwave infrared (SWIR, 1000-1700 nm) regions have the potential to produce noninvasive high-contrast biological images and videos. BODIPY dyes are well known for their high quantum yields in the visible energy region. To tune these chromophores to the NIR region, fused nitrogen-based heterocyclic indolizine donors were added to a BODIPY scaffold. The indolizine BODIPY dyes were synthesized via microwave-assisted Knoevenagel condensation with indolizine aldehydes. The non-protonated dyes showed NIR absorption and emission at longer wavelengths than an aniline benchmark. Protonation of the dyes produced a dramatic 0.35 eV bathochromic shift (230 nm shift from 797 nm to 1027 nm) to give a SWIR absorption and emission (λmaxemis = 1061 nm). Deprotonation demonstrates that material emission is reversibly switchable between the NIR and SWIR.

12.
Chemistry ; 29(14): e202202902, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36440875

ABSTRACT

De novo metalloprotein design involves the construction of proteins guided by specific repeat patterns of polar and apolar residues, which, upon self-assembly, provide a suitable environment to bind metals and produce artificial metalloenzymes. While a wide range of functionalities have been realized in de novo designed metalloproteins, the functional repertoire of such constructs towards alternative energy-relevant catalysis is currently limited. Here we show the application of de novo approach to design a functional H2 evolving protein. The design involved the assembly of an amphiphilic peptide featuring cysteines at tandem a/d sites of each helix. Intriguingly, upon NiII addition, the oligomers shift from a major trimeric assembly to a mix of dimers and trimers. The metalloprotein produced H2 photocatalytically with a bell-shape pH dependence, having a maximum activity at pH 5.5. Transient absorption spectroscopy is used to determine the timescales of electron transfer as a function of pH. Selective outer sphere mutations are made to probe how the local environment tunes activity. A preferential enhancement of activity is observed via steric modulation above the NiII site, towards the N-termini, compared to below the NiII site towards the C-termini.


Subject(s)
Metalloproteins , Metalloproteins/chemistry , Hydrogen , Metals , Cysteine/chemistry , Peptides/chemistry
13.
ACS Omega ; 7(31): 27742-27754, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35967036

ABSTRACT

Carbon quantum dots (CQDs) have potential applications in many fields such as light-emitting devices, photocatalysis, and bioimaging due to their unique photoluminescence (PL) properties and environmental benignness. Here, we report the synthesis of nitrogen-doped carbon quantum dots (NCQDs) from citric acid and m-phenylenediamine using a one-pot hydrothermal approach. The environment-dependent emission changes of NCQDs were extensively investigated in various solvents, in the solid state, and in physically assembled PMMA-PnBA-PMMA copolymer gels in 2-ethyl-hexanol. NCQDs display bright emissions in various solvents as well as in the solid state. These NCQDs exhibit multicolor PL emission across the visible region upon changing the environment (solutions and polymer matrices). NCQDs also exhibit excitation-dependent PL and solvatochromism, which have not been frequently investigated in CQDs. Most CQDs are nonemissive in the aggregated or solid state due to the aggregation-caused quenching (ACQ) effect, limiting their solid-state applications. However, NCQDs synthesized here display a strong solid-state emission centered at 568 nm attributed to the presence of surface functional groups that restrict the π-π interaction between the NCQDs and assist in overcoming the ACQ effect in the solid state. NCQD-containing gels display significant fluorescence enhancement in comparison to the NCQDs in 2-ethyl hexanol, likely because of the interaction between the polar PMMA blocks and NCQDs. The application of NCQDs-Gel as a solid/gel state fluorescent display has been presented. This research facilitates the development of large-scale, low-cost multicolor phosphor for the fabrication of optoelectronic devices, sensing, and bioimaging applications.

14.
J Org Chem ; 87(17): 11319-11328, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35984405

ABSTRACT

The design of shortwave infrared (SWIR) emissive small molecules with good stability in water remains an important challenge for fluorescence biological imaging applications. A series of four SWIR emissive rhodindolizine (RI) dyes were rationally designed and synthesized to probe the effects of nonconjugated substituents, conjugated donor groups, and nanoencapsulation in a water-soluble polymer on the stability and optical properties of the dyes. Steric protecting groups were added at the site of a significant LUMO presence to probe the effects on stability. Indolizine donor groups with added dimethylaniline groups were added to reduce the electrophilicity of the dyes toward nucleophiles such as water. All of the dyes were found to absorb (920-1096 nm peak values) and emit (1082-1256 nm peak values) within the SWIR region. Among xanthene-based emissive dyes, emission values >1200 nm are exceptional with 1256 nm peak emission being a longer emission than the recent record setting VIX-4 xanthene-based dye. Half-lives were improved from ∼5 to >24 h through the incorporation of either steric-based core protection groups or donors with increased donation strength. Importantly, the nanoencapsulation of the dyes in a water-soluble surfactant (Triton-X) allows for the use of these dyes in biological imaging applications.


Subject(s)
Fluorescent Dyes , Optical Imaging , Optical Imaging/methods , Polymers , Water , Xanthenes
15.
Chemphyschem ; 23(22): e202200309, 2022 11 18.
Article in English | MEDLINE | ID: mdl-35862256

ABSTRACT

Guest-host Raman under liquid nitrogen spectroscopy (GHRUNS) is introduced whereby solid-state guest molecules are isolated inside cage-like host environments for the facile acquisition of their Raman spectra. This convenient method features reduced fluorescence, the analysis of populations in their ground states, and increased signal to noise ratios. Samples are also preserved through the reduction of thermal degradation and oxidation. To demonstrate the benefits of this new method, Raman spectra of the ubiquitous molecule C60 inside a cage of water ice are presented. Using this technique, a new normal mode of C60 is elucidated. The GHRUNS methodology is of interest to those seeking to acquire and characterize the vibrational spectra, structure, and properties of emissive, air-sensitive molecules.


Subject(s)
Quantum Theory , Vibration , Spectrum Analysis, Raman/methods , Nitrogen
16.
Phys Chem Chem Phys ; 24(19): 11713-11720, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35506511

ABSTRACT

The potential formation of halogen bonded complexes between a donor, heptafluoro-2-iodopropane (HFP), and the three acceptor heterocyclic azines (azabenzenes: pyridine, pyrimidine, and pyridazine) is investigated herein through normal mode analysis via Raman spectroscopy, density functional theory, and natural electron configuration analysis. Theoretical Raman spectra of the halogen bonded complexes are in good agreement with experimental data providing insight into the Raman spectra of these complexes. The exhibited shifts in vibrational frequency of as high as 8 cm-1 for each complex demonstrate, in conjunction with NEC analysis, significant evidence of charge transfer from the halogen bond acceptor to donor. Here, an interesting charge flow mechanism is proposed involving the donated nitrogen lone pair electrons pushing the dissociated fluorine atoms back to their respective atoms. This mechanism provides further insight into the formation and fundamental nature of halogen bonding and its effects on neighboring atoms. The present findings provide novel and deeper characterization of halogen bonding with applications in supramolecular and organometallic chemistry.

17.
ACS Omega ; 7(15): 13189-13195, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35474808

ABSTRACT

The pyridine-borane (PyBH3) complex was analyzed by Raman vibrational spectroscopy and density functional theory to elucidate its structural and vibrational properties and to compare these with those for neat pyridine (Py). The borane-nitrogen (BN) bond length, the BN dative bond stretching frequency, and the effects of dative-bonded complex formation on Py are presented. Rather than having a single isolated stretching motion, the complex exhibits multiple BN dative bond stretches that are coupled to Py's vibrations. These modes exhibit large shifts that are higher in energy relative to neat Py, similar to previous observations of Py/water mixtures. However, significantly higher charge transfer was observed in the dative-bonded complex when compared to the hydrogen-bonded complex with water. A linear relationship between charge transfer and shifts to higher frequencies of pyridine's vibrational modes agrees well with earlier observations. The present work is of interest to those seeking a stronger relationship between charge-transfer events and concomitant changes in molecular properties.

18.
J Org Chem ; 86(21): 15376-15386, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34647452

ABSTRACT

Shortwave infrared (SWIR)-emitting small molecules are desirable for biological imaging applications. In this study, four novel pentamethine indolizine cyanine dyes were synthesized with N,N-dimethylaniline-based substituents on the indolizine periphery at varied substitution sites. The dyes are studied via computational chemistry and optical spectroscopy both in solution and when encapsulated. Dramatic spectral shifts in the absorption and emission spectrum wavelengths with added donor groups are observed. Significant absorption and emission with an emissive quantum yield as high as 3.6% in the SWIR region is possible through the addition of multiple donor groups per indolizine.


Subject(s)
Indolizines , Quinolines , Fluorescent Dyes , Infrared Rays
19.
J Chem Phys ; 155(11): 114306, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34551536

ABSTRACT

This study has examined the relative energetics of nine stationary points associated with the three different radical isomers generated by removing a H atom from ethanol at the O atom (ethoxy, CH3CH2O), the α C atom (CH3CHOH), and the ß C atom (CH2CH2OH). For the first time, CCSD(T) geometry optimizations and harmonic vibrational frequency computations with the cc-pVTZ and aug-cc-pVTZ basis sets have been carried out to characterize two unique minima for each isomer along with three transition state structures with Cs symmetry. Explicitly correlated CCSD(T) computations were also performed to estimate the relative energetics of these nine stationary points near the complete basis set limit. These benchmark results were used to assess the performance of various density functional theory (DFT) and wave function theory methods, and they will help guide method selection for future studies of alcohols and their radicals. The structures generated by abstracting H from the α C atom have significantly lower electronic energies (by at least 7 kcal mol-1) than the CH3CH2O and CH2CH2OH radicals. Although previously reported as a minimum on the ground-state surface, the 2A″ Cs structure of the ethoxy radical was found to be a transition state in this study with MP2, CCSD(T), and a number of DFT methods. An implicit solvation model used in conjunction with DFT and MP2 methods did not qualitatively change the relative energies of the isomers, but the results suggest that the local minima for the CH3CHOH and CH2CH2OH radicals could become more energetically competitive in condensed phase environments, such as liquid water and ethanol.

20.
Front Chem ; 9: 729125, 2021.
Article in English | MEDLINE | ID: mdl-34485246

ABSTRACT

The challenges faced with current fluorescence imaging agents have motivated us to study two nanostructures based on a hydrophobic dye, 6H-pyrrolo[3,2-b:4,5-b']bis [1,4]benzothiazine (TRPZ). TRPZ is a heteroacene with a rigid, pi-conjugated structure, multiple reactive sites, and unique spectroscopic properties. Here we coupled TRPZ to a tert-butyl carbamate (BOC) protected 2,2-bis(hydroxymethyl)propanoic acid (bisMPA) dendron via azide-alkyne Huisgen cycloaddition. Deprotection of the protected amine groups on the dendron afforded a cationic terminated amphiphile, TRPZ-bisMPA. TRPZ-bisMPA was nanoprecipitated into water to obtain nanoparticles (NPs) with a hydrodynamic radius that was <150 nm. For comparison, TRPZ-PG was encapsulated in pluronic-F127 (Mw = 12 kD), a polymer surfactant to afford NPs almost twice as large as those formed by TRPZ-bisMPA. Size and stability studies confirm the suitability of the TRPZ-bisMPA NPs for biomedical applications. The photophysical properties of the TRPZ-bisMPA NPs show a quantum yield of 49%, a Stokes shift of 201 nm (0.72 eV) and a lifetime of 6.3 ns in water. Further evidence was provided by cell viability and cellular uptake studies confirming the low cytotoxicity of TRPZ-bisMPA NPs and their potential in bioimaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...