Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 17(2): e202301149, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37737522

ABSTRACT

The utilization of water as a sustainable reaction medium has important advantages over traditional organic solvents. Hydroxypropyl methylcellulose has emerged as a biomass-based polymeric additive that enables organic reactions in water through hydrophobic effects. However, such conditions imply slurries as reaction mixtures, where the efficacy of mass transfer and mixing decreases with increasing vessel size. In order to circumvent this limitation and establish an effectively scalable platform for performing hydroxypropyl methylcellulose-mediated aqueous transformations, we utilized oscillatory plug flow reactors that feature a smart dimensioning design principle across different scales. Using nucleophilic aromatic substitutions as valuable model reactions, rapid parameter optimization was performed first in a small-scale instrument having an internal channel volume of 5 mL. The optimal conditions were then directly transferred to a 15 mL reactor, achieving a three-fold scale-up without re-optimizing any reaction parameters. By precisely fine-tuning the oscillation parameters, the system achieved optimal homogeneous suspension of solids, preventing settling of particles and clogging of process channels. Ultimately, this resulted in a robust and scalable platform for performing multiphasic reactions under aqueous conditions.

2.
PLoS One ; 12(6): e0178744, 2017.
Article in English | MEDLINE | ID: mdl-28591165

ABSTRACT

Targeting mitochondrial energy metabolism is a novel approach in cancer research and can be traced back to the description of the Warburg effect. Dichloroacetate, a controversially discussed subject of many studies in cancer research, is a pyruvate dehydrogenase kinase inhibitor. Dichloroacetate causes metabolic changes in cancerous glycolysis towards oxidative phosphorylation via indirect activation of pyruvate dehydrogenase in mitochondria. Canine mammary cancer is frequently diagnosed but after therapy prognosis still remains poor. In this study, canine mammary carcinoma, adenoma and non-neoplastic mammary gland cell lines were treated using 10 mM Dichloroacetate. The effect on cell number, lactate release and PDH expression and cell respiration was investigated. Further, the effect on apoptosis and several apoptotic proteins, proliferation, and microRNA expression was evaluated. Dichloroacetate was found to reduce cell proliferation without inducing apoptosis in all examined cell lines.


Subject(s)
Apoptosis/drug effects , Dichloroacetic Acid/pharmacology , Mammary Glands, Animal/cytology , Animals , Cell Count , Cell Line , Cell Proliferation/drug effects , Cell Respiration/drug effects , Dogs , Female , Inhibitor of Apoptosis Proteins/metabolism , Lactic Acid/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Microscopy, Fluorescence , Mitochondria/drug effects , Mitochondria/metabolism , Phosphorylation/drug effects , Protein Serine-Threonine Kinases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Time Factors
3.
Int J Mol Sci ; 17(10)2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27690019

ABSTRACT

Human and canine mammary tumours show partial claudin expression deregulations. Further, claudins have been used for directed therapeutic approaches. However, the development of claudin targeting approaches requires stable claudin expressing cell lines. This study reports the establishment and characterisation of canine mammary tissue derived cell lines, analysing longitudinally the claudin-1, -3, -4 and -7 expressions in original tissue samples, primary cultures and developed cell lines. Primary cultures were derived from 17 canine mammary tissues: healthy, lobular hyperplasia, simple adenoma, complex adenoma, simple tubular carcinoma, complex carcinoma, carcinoma arising in a benign mixed tumour and benign mixed tissue. Cultivation was performed, if possible, until passage 30. Claudin mRNA and protein expressions were analysed by PCR, QuantiGene Plex Assay, immunocytochemistry and immunofluorescence. Further, cytokeratin expression was analysed immunocytochemically. Cultivation resulted in 11 established cell lines, eight showing epithelial character. In five of the early passages the claudin expressions decreased compared to the original tissues. In general, claudin expressions were diminished during cultivation. Three cell lines kept longitudinally claudin, as well as epithelial marker expressions, representing valuable tools for the development of claudin targeted anti-tumour therapies.

4.
Int J Mol Sci ; 17(9)2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27657059

ABSTRACT

Mammary gland tumors are one of the most common neoplasms in female dogs, and certain breeds are prone to develop the disease. The use of biomarkers in canines is still restricted to research purposes. Therefore, the necessity to analyze gene profiles in different mammary entities in large sample sets is evident in order to evaluate the strength of potential markers serving as future prognostic factors. The aim of the present study was to analyze the gene expression of 16 target genes (BRCA1, BRCA2, FOXO3, GATA4, HER2, HMGA1, HMGA2, HMGB1, MAPK1, MAPK3, MCL1, MYC, PFDN5, PIK3CA, PTEN, and TP53) known to be involved in human and canine mammary neoplasm development. Expression was analyzed in 111 fresh frozen (FF) and in 170 formalin-fixed, paraffin-embedded (FFPE) specimens of neoplastic and non-neoplastic canine mammary tissues using a multiplexed branched-DNA (b-DNA) assay. TP53, FOXO3, PTEN, and PFDN5 expression revealed consistent results with significant low expression in malignant tumors. The possibility of utilizing them as predictive factors as well as for assisting in the choice of an adequate gene therapy may help in the development of new and improved approaches in canine mammary tumors.

5.
PLoS One ; 11(9): e0163311, 2016.
Article in English | MEDLINE | ID: mdl-27649560

ABSTRACT

Immunohistochemistry (IHC) is currently considered the method of choice for steroid hormone receptor status evaluation in human breast cancer and, therefore, it is commonly utilized for assessing canine mammary tumors. In case of low hormone receptor expression, IHC is limited and thus is complemented by molecular analyses. In the present study, a multiplex bDNA assay was evaluated as a method for hormone receptor gene expression detection in canine mammary tissues. Estrogen receptor (ESR1), progesterone receptor (PGR), prolactin receptor (PRLR) and growth hormone receptor (GHR) gene expressions were evaluated in neoplastic and non-neoplastic canine mammary tissues. A set of 119 fresh frozen and 180 formalin-fixed, paraffin-embedded (FFPE) was comparatively analyzed and used for assay evaluation. Furthermore, a possible association between the hormone receptor expression in different histological subtypes of canine malignant mammary tumors and the castration status, breed and invasive growth of the tumor were analyzed. The multiplex bDNA assay proved to be more sensitive for fresh frozen specimens. Hormone receptor expression found was significantly decreased in malignant mammary tumors in comparison to non-neoplastic tissue and benign mammary tumors. Among the histological subtypes the lowest gene expression levels of ESR1, PGR and PRLR were found in solid, anaplastic and ductal carcinomas. In summary, the evaluation showed that the measurement of hormone receptors with the multiplex bDNA assay represents a practicable method for obtaining detailed quantitative information about gene expression in canine mammary tissue for future studies. Still, comparison with IHC or quantitative real-time PCR is needed for further validation of the present method.


Subject(s)
Carcinoma, Ductal/veterinary , Dog Diseases/genetics , Mammary Neoplasms, Animal/genetics , Receptors, Estrogen/genetics , Receptors, Progesterone/genetics , Receptors, Prolactin/genetics , Receptors, Somatotropin/genetics , Animals , Biomarkers, Tumor/genetics , Branched DNA Signal Amplification Assay , Carcinoma, Ductal/genetics , Carcinoma, Ductal/metabolism , Carcinoma, Ductal/pathology , Dog Diseases/metabolism , Dog Diseases/pathology , Dogs , Female , Gene Expression , Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Animal/pathology , Paraffin Embedding , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Receptors, Prolactin/metabolism , Receptors, Somatotropin/metabolism
6.
Int J Mol Sci ; 17(5)2016 May 13.
Article in English | MEDLINE | ID: mdl-27187374

ABSTRACT

Mammary neoplasms are the tumors most affecting female dogs and women. Formalin-fixed, paraffin-embedded (FFPE) tissues are an invaluable source of archived biological material. Fresh frozen (FF) tissue is considered ideal for gene expression analysis. However, strategies based on FFPE material offer several advantages. Branched-DNA assays permit a reliable and fast workflow when analyzing gene expression. The aim of this study was to assess the comparability of the branched-DNA assay when analyzing certain gene expression patterns between FF and FFPE samples in canine mammary tumors. RNA was isolated from 109 FFPE samples and from 93 FF samples of different canine mammary tissues. Sixteen (16) target genes (Tp53; Myc; HMGA1; Pik3ca; Mcl1; MAPK3; FOXO3; PTEN; GATA4; PFDN5; HMGB1; MAPK1; BRCA2; BRCA1; HMGA2; and Her2) were analyzed via branched-DNA assay (b-DNA). ACTB, GAPDH, and HPRT1 were used as data normalizers. Overall, the relative gene expression of the two different origins of samples showed an agreement of 63%. Still, care should be taken, as FFPE specimens showed lower expression of the analyzed targets when compared to FF samples. The fact that the gene expression in FFPE proved to be lower than in FF specimens is likely to have been caused by the effect of storage time. ACTB had the best performance as a data normalizer.


Subject(s)
Biomarkers, Tumor/analysis , Cryopreservation/methods , Mammary Neoplasms, Animal/pathology , Paraffin Embedding/methods , Tissue Fixation/methods , Animals , Biomarkers, Tumor/genetics , Dogs , Female , Polymerase Chain Reaction/methods
7.
J Biomed Opt ; 20(11): 115005, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26562032

ABSTRACT

Laser-based transfection techniques have proven high applicability in several cell biologic applications. The delivery of different molecules using these techniques has been extensively investigated. In particular, new high-throughput approaches such as gold nanoparticle­mediated laser transfection allow efficient delivery of antisense molecules or proteins into cells preserving high cell viabilities. However, the cellular response to the perforation procedure is not well understood. We herein analyzed the perforation kinetics of single cells during resonant gold nanoparticle­mediated laser manipulation with an 850-ps laser system at a wavelength of 532 nm. Inflow velocity of propidium iodide into manipulated cells reached a maximum within a few seconds. Experiments based on the inflow of FM4-64 indicated that the membrane remains permeable for a few minutes for small molecules. To further characterize the cellular response postmanipulation, we analyzed levels of oxidative heat or general stress. Although we observed an increased formation of reactive oxygen species by an increase of dichlorofluorescein fluorescence, heat shock protein 70 was not upregulated in laser-treated cells. Additionally, no evidence of stress granule formation was visible by immunofluorescence staining. The data provided in this study help to identify the cellular reactions to gold nanoparticle­mediated laser manipulation.


Subject(s)
Cell Membrane Permeability/physiology , Electroporation/methods , Gold/radiation effects , Metal Nanoparticles/radiation effects , Optical Tweezers , Transfection/methods , Cell Membrane Permeability/radiation effects , Gold/chemistry , Metal Nanoparticles/chemistry , Radiation Dosage
8.
PLoS One ; 10(7): e0131280, 2015.
Article in English | MEDLINE | ID: mdl-26132936

ABSTRACT

BACKGROUND: A somatic deletion at the proximal end of canine chromosome 27 (CFA27) was recently reported in 50% of malignant mammary tumors. This region harbours the tumor suppressor gene prefoldin subunit 5 (PFDN5) and the deletion correlated with a higher Ki-67 score. PFDN5 has been described to repress c-MYC and is, therefore, a candidate tumor-suppressor and cancer-driver gene in canine mammary cancer. Aim of this study was to confirm the recurrent deletion in a larger number of tumors. METHODS: Droplet digital PCR for PFDN5 was performed in DNA from 102 malignant, 40 benign mammary tumors/dysplasias, 11 non-neoplastic mammary tissues and each corresponding genomic DNA from leukocytes. The copy number of PFDN5 was normalized to a reference amplicon on canine chromosome 32 (CFA32). Z-scores were calculated, based on Gaussian distributed normalized PFDN5 copy numbers of the leukocyte DNA. Z-scores ≤ -3.0 in tissue were considered as being indicative of the PFDN5 deletion and called as such. The Ki-67 proliferation index was assessed in a subset of 79 tissue samples by immunohistochemistry. RESULTS: The deletion was confirmed in 24% of all malignant tumors, detected in only 7.5% of the benign tumors and was not present in any normal mammary tissue sample. The subgroup of solid carcinomas (n = 9) showed the highest frequency of the deletion (67%) and those malignomas without microscopical high fraction of benign tissue (n = 71) had a 32% frequency (p<0.01 vs. benign samples). The Ki-67 score was found to be significantly higher (p<0.05) in the PFDN5-deleted group compared to malignant tumors without the deletion. CONCLUSIONS: A somatic deletion of the PFDN5 gene is recurrently present in canine mammary cancer, supporting a potential role in carcinogenesis. The association of this deletion with higher Ki-67 indicates an increased proliferation rate and thus a link to tumor aggressiveness can be hypothesized. The confirmation of earlier results warrants further studies on PFDN5 as cancer-driver gene.


Subject(s)
Gene Deletion , Mammary Neoplasms, Animal/genetics , Molecular Chaperones/genetics , Animals , Dogs , Female , Protein Subunits/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...