Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 21(12)2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32599915

ABSTRACT

Niemann-Pick type C1 (NPC1) is a lysosomal storage disorder, inherited as an autosomal-recessive trait. Mutations in the Npc1 gene result in malfunction of the NPC1 protein, leading to an accumulation of unesterified cholesterol and glycosphingolipids. Beside visceral symptoms like hepatosplenomegaly, severe neurological symptoms such as ataxia occur. Here, we analyzed the sphingosine-1-phosphate (S1P)/S1P receptor (S1PR) axis in different brain regions of Npc1-/- mice and evaluated specific effects of treatment with 2-hydroxypropyl-ß-cyclodextrin (HPßCD) together with the iminosugar miglustat. Using high-performance thin-layer chromatography (HPTLC), mass spectrometry, quantitative real-time PCR (qRT-PCR) and western blot analyses, we studied lipid metabolism in an NPC1 mouse model and human skin fibroblasts. Lipid analyses showed disrupted S1P metabolism in Npc1-/- mice in all brain regions, together with distinct changes in S1pr3/S1PR3 and S1pr5/S1PR5 expression. Brains of Npc1-/- mice showed only weak treatment effects. However, side effects of the treatment were observed in Npc1+/+ mice. The S1P/S1PR axis seems to be involved in NPC1 pathology, showing only weak treatment effects in mouse brain. S1pr expression appears to be affected in human fibroblasts, induced pluripotent stem cells (iPSCs)-derived neural progenitor and neuronal differentiated cells. Nevertheless, treatment-induced side effects make examination of further treatment strategies indispensable.


Subject(s)
1-Deoxynojirimycin/analogs & derivatives , Brain/drug effects , Disease Models, Animal , Intracellular Signaling Peptides and Proteins/physiology , Lysophospholipids/metabolism , Mutation , Niemann-Pick Disease, Type C/drug therapy , Sphingosine/analogs & derivatives , 1-Deoxynojirimycin/pharmacology , Adult , Animals , Brain/metabolism , Brain/pathology , Glycoside Hydrolase Inhibitors/pharmacology , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Mice , Mice, Knockout , Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/pathology , Sphingosine/metabolism , Young Adult
2.
Cell Rep ; 26(7): 1906-1918.e8, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30759399

ABSTRACT

In this study, we demonstrate that, among all five CBX Polycomb proteins, only CBX7 possesses the ability to control self-renewal of human hematopoietic stem and progenitor cells (HSPCs). Xenotransplantation of CBX7-overexpressing HSPCs resulted in increased multi-lineage long-term engraftment and myelopoiesis. Gene expression and chromatin analyses revealed perturbations in genes involved in differentiation, DNA and chromatin maintenance, and cell cycle control. CBX7 is upregulated in acute myeloid leukemia (AML), and its genetic or pharmacological repression in AML cells inhibited proliferation and induced differentiation. Mass spectrometry analysis revealed several non-histone protein interactions between CBX7 and the H3K9 methyltransferases SETDB1, EHMT1, and EHMT2. These CBX7-binding proteins possess a trimethylated lysine peptide motif highly similar to the canonical CBX7 target H3K27me3. Depletion of SETDB1 in AML cells phenocopied repression of CBX7. We identify CBX7 as an important regulator of self-renewal and uncover non-canonical crosstalk between distinct pathways, revealing therapeutic opportunities for leukemia.


Subject(s)
Hematopoietic Stem Cells/metabolism , Polycomb Repressive Complex 1/metabolism , Stem Cells/metabolism , Animals , Female , Fetal Blood/cytology , Fetal Blood/metabolism , HEK293 Cells , HL-60 Cells , Hematopoietic Stem Cells/cytology , Heterografts , Histone-Lysine N-Methyltransferase/metabolism , Humans , K562 Cells , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Polycomb Repressive Complex 1/biosynthesis , Polycomb Repressive Complex 1/genetics , Stem Cells/cytology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...