Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; 17(16): e202200426, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35696559

ABSTRACT

Hydrogen sulfide is a biologically important molecule and developing chemical tools that enable further investigations into the functions of H2 S is essential. Fluorescent turn-on H2 S probes have been developed for use in cellulo and in vivo, but the membrane permeability of these probes can lead to probe leakage and signal attenuation over time. Here we report a cell trappable fluorescent probe for H2 S, CT-MeRhoAz, which is based on a methylrhodolazide scaffold derivatized with an acetoxymethyl ester group. Prior to ester cleavage, the CT-MeRhoAz probe generates a 2500-fold turn-on response to H2 S, which is enhanced to a 3000-fold response for the carboxylic acid form of the probe. Additionally, the probe is highly selective for H2 S over other biologically relevant sulfur, oxygen, and nitrogen-based analytes. Live cell imaging experiments confirmed the biocompatibility of CT-MeRhoAz and also that it is cell trappable, unlike the parent MeRhoAz scaffold.


Subject(s)
Hydrogen Sulfide , Xanthones , Esters , Fluorescent Dyes/chemistry , Hydrogen Sulfide/metabolism
2.
Org Biomol Chem ; 19(10): 2213-2223, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33349821

ABSTRACT

Photoactivatable protecting groups (PPGs) are useful for a broad range of applications ranging from biology to materials science. In chemical biology, induction of biological processes via photoactivation is a powerful strategy for achieving spatiotemporal control. The importance of cysteine, glutathione, and other bioactive thiols in regulating protein structure/activity and cell redox homeostasis makes modulation of thiol activity particularly useful. One major objective for enhancing the utility of photoactivatable protecting groups (PPGs) in living systems is creating PPGs with longer wavelength absorption maxima and efficient two-photon (TP) absorption. Toward these objectives, we developed a carboxyl- and dimethylamine-functionalized nitrodibenzofuran PPG scaffold (cDMA-NDBF) for thiol photoactivation, which has a bathochromic shift in the one-photon absorption maximum from λmax = 315 nm with the unfunctionalized NDBF scaffold to λmax = 445 nm. While cDMA-NDBF-protected thiols are stable in the presence of UV irradiation, they undergo efficient broad-spectrum TP photolysis at wavelengths as long as 900 nm. To demonstrate the wavelength orthogonality of cDMA-NDBF and NDBF photolysis in a biological setting, caged farnesyltransferase enzyme inhibitors (FTI) were prepared and selectively photoactivated in live cells using 850-900 nm TP light for cDMA-NDBF-FTI and 300 nm UV light for NDBF-FTI. These experiments represent the first demonstration of thiol photoactivation at wavelengths above 800 nm. Consequently, cDMA-NDBF-caged thiols should have broad applicability in a wide range of experiments in chemical biology and materials science.


Subject(s)
Benzofurans/chemistry , Enzyme Inhibitors/pharmacology , Sulfhydryl Compounds/pharmacology , Animals , Benzofurans/chemical synthesis , Benzofurans/radiation effects , Dogs , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/radiation effects , Farnesyltranstransferase/antagonists & inhibitors , Infrared Rays , Madin Darby Canine Kidney Cells , Photolysis/radiation effects , Photons , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/radiation effects
3.
Org Lett ; 19(9): 2314-2317, 2017 05 05.
Article in English | MEDLINE | ID: mdl-28440074

ABSTRACT

In an effort to expand the availability of simple polysulfides for H2S donation, we report here the synthesis and H2S release profiles of bis(aryl) and bis(alkyl) tetrasulfides. The tetrasulfide donors release H2S in a first-order dependence on reduced glutathione (GSH) and release more H2S than the commonly used trisulfide DATS.

4.
Synlett ; 27(9): 1349-1353, 2016.
Article in English | MEDLINE | ID: mdl-27397970

ABSTRACT

As additional physiological functions of hydrogen sulfide (H2S) are discovered, developing practical methods for exogenous H2S delivery is important. In particular, nonsteroidal anti-inflammatory drugs (NSAIDs) functionalized with H2S-releasing anethole dithiolethione (ADT-OH) through ester bonds are being investigated for their combined anti-inflammatory and antioxidant potential. The chemical robustness of the connection between drug and H2S-delivery components, however, is a key and controllable linkage in these compounds. Because esters are susceptible to hydrolysis, particularly under acidic conditions such as stomach acid in oral drug delivery applications, we report here a simple synthesis of amino-ADT (ADT-NH2 ) and provide conditions for successful ADT-NH2 derivatization with the drugs naproxen and valproic acid. Using UV-vis spectroscopy and HPLC analysis, we demonstrate that amide-functionalized ADT derivatives are significantly more resistant to hydrolysis than ester-functionalized ADT derivatives.

5.
J Am Chem Soc ; 137(32): 10216-23, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26061541

ABSTRACT

Hydrogen sulfide (H2S) is a critical gaseous signaling molecule emerging at the center of a rich field of chemical and biological research. As our understanding of the complexity of physiological H2S in signaling pathways evolves, advanced chemical and technological investigative tools are required to make sense of this interconnectivity. Toward this goal, we have developed an azide-functionalized O-methylrhodol fluorophore, MeRho-Az, which exhibits a rapid >1000-fold fluorescence response when treated with H2S, is selective for H2S over other biological analytes, and has a detection limit of 86 nM. Additionally, the MeRho-Az scaffold is less susceptible to photoactivation than other commonly used azide-based systems, increasing its potential application in imaging experiments. To demonstrate the efficacy of this probe for H2S detection, we demonstrate the ability of MeRho-Az to detect differences in H2S levels in C6 cells and those treated with AOAA, a common inhibitor of enzymatic H2S synthesis. Expanding the use of MeRho-Az to complex and heterogeneous biological settings, we used MeRho-Az in combination with light sheet fluorescence microscopy (LSFM) to visualize H2S in the intestinal tract of live zebrafish. This application provides the first demonstration of analyte-responsive 3D imaging with LSFM, highlighting the utility of combining new probes and live imaging methods for investigating chemical signaling in complex multicellular systems.


Subject(s)
Azides/chemistry , Fluoresceins/chemistry , Fluorescent Dyes/chemistry , Hydrogen Sulfide/analysis , Hydrogen Sulfide/chemistry , Microscopy, Fluorescence/methods , Zebrafish/metabolism , Animals , Azides/chemical synthesis , Chemistry Techniques, Synthetic , Fluoresceins/chemical synthesis , Fluorescent Dyes/chemical synthesis , Imaging, Three-Dimensional , Larva/metabolism , Limit of Detection
6.
Nitric Oxide ; 49: 26-39, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26068241

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is characterized by Von Hippel-Lindau (VHL)-deficiency, resulting in pseudohypoxic, angiogenic and glycolytic tumours. Hydrogen sulfide (H2S) is an endogenously-produced gasotransmitter that accumulates under hypoxia and has been shown to be pro-angiogenic and cytoprotective in cancer. It was hypothesized that H2S levels are elevated in VHL-deficient ccRCC, contributing to survival, metabolism and angiogenesis. Using the H2S-specific probe MeRhoAz, it was found that H2S levels were higher in VHL-deficient ccRCC cell lines compared to cells with wild-type VHL. Inhibition of H2S-producing enzymes could reduce the proliferation, metabolism and survival of ccRCC cell lines, as determined by live-cell imaging, XTT/ATP assay, and flow cytometry respectively. Using the chorioallantoic membrane angiogenesis model, it was found that systemic inhibition of endogenous H2S production was able to decrease vascularization of VHL-deficient ccRCC xenografts. Endogenous H2S production is an attractive new target in ccRCC due to its involvement in multiple aspects of disease.


Subject(s)
Carcinoma, Renal Cell/metabolism , Hydrogen Sulfide/antagonists & inhibitors , Hydrogen Sulfide/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chick Embryo , Humans , Hydrogen Sulfide/pharmacology , Neovascularization, Pathologic/metabolism , Xenograft Model Antitumor Assays
7.
Anal Chem ; 86(14): 7135-40, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24934901

ABSTRACT

Hydrogen sulfide (H2S) is an integral signaling molecule in biology with complex generation, translocation, and metabolism processes that are intertwined with cellular thiols. Differentiating the complex interplay between H2S and biological thiols, however, remains challenging due to the difficulty of monitoring H2S and thiol levels simultaneously in complex redox environments. As a step toward unraveling the complexities of H2S and thiols in sulfur redox homeostasis, we present a dual-fluorophore fragmentation strategy that allows for the ratiometric determination of relative H2S and cysteine (Cys) or homocysteine (Hcy) concentrations, two important metabolites in H2S biosynthesis. The key design principle is based on a nitrobenzofurazan-coumarin (NBD-Coum) construct, which fragments into spectroscopically differentiable products upon nucleophilic aromatic substitution with either H2S or Cys/Hcy. Measurement of the ratio of fluorescence intensities from coumarin and the NBD-Cys or NBD-Hcy adducts generates a sigmoidal response with a dynamic range of 3 orders of magnitude. The developed scaffold displays a rapid response (<1 min) and is selective for sulfhydryl-containing nucleophiles over other reactive sulfur, oxygen, and nitrogen species, including alcohol- and amine-functionalized amino acids, polyatomic anionic sulfur species, NO, and HNO. Additionally, NBD-Coum is demonstrated to differentiate and report on different oxidative stress stimuli in simulated sulfur pools containing H2S, Cys, and cystine.


Subject(s)
Chemistry Techniques, Analytical/methods , Cysteine/analysis , Fluorescent Dyes/chemistry , Homocysteine/analysis , Hydrogen Sulfide/analysis , 4-Chloro-7-nitrobenzofurazan/chemistry , Coumarins/chemistry , Fluorescent Dyes/chemical synthesis , Hymecromone/chemistry , Oxadiazoles/chemistry , Oxidation-Reduction , Spectrometry, Fluorescence/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...