Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 12(8): 760-4, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23852401

ABSTRACT

Standard electronic devices encode bits of information by controlling the amount of electric charge in the circuits. Alternatively, it is possible to make devices that rely on other properties of electrons than their charge. For example, spintronic devices make use of the electron spin angular momentum as a carrier of information. A new concept is valleytronics in which information is encoded by the valley quantum number of the electron. The analogy between the valley and spin degrees of freedom also implies the possibility of valley-based quantum computing. In this Article, we demonstrate for the first time generation, transport (across macroscopic distances) and detection of valley-polarized electrons in bulk diamond with a relaxation time of 300 ns at 77 K. We anticipate that these results will form the basis for the development of integrated valleytronic devices.

2.
Science ; 297(5587): 1670-2, 2002 Sep 06.
Article in English | MEDLINE | ID: mdl-12215638

ABSTRACT

Room-temperature drift mobilities of 4500 square centimeters per volt second for electrons and 3800 square centimeters per volt second for holes have been measured in high-purity single-crystal diamond grown using a chemical vapor deposition process. The low-field drift mobility values were determined by using the time-of-flight technique on thick, intrinsic, freestanding diamond plates and were verified by current-voltage measurements on p-i junction diodes. The improvement of the electronic properties of single-crystal diamond and the reproducibility of those properties are encouraging for research on, and development of, high-performance diamond electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...