Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Biomedicines ; 11(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-38001893

ABSTRACT

The successful development of effective viral vaccines depends on well-known correlates of protection, high immunogenicity, acceptable safety criteria, low reactogenicity, and well-designed immune monitoring and serology. Virus-neutralizing antibodies are often a good correlate of protective immunity, and their serum concentration is a key parameter during the pre-clinical and clinical testing of vaccine candidates. Viruses are inherently infectious and potentially harmful, but we and others developed replication-defective SARS-CoV-2 virus-like-particles (VLPs) as surrogates for infection to quantitate neutralizing antibodies with appropriate target cells using a split enzyme-based approach. Here, we show that SARS-CoV-2 and Epstein-Barr virus (EBV)-derived VLPs associate and fuse with extracellular vesicles in a highly specific manner, mediated by the respective viral fusion proteins and their corresponding host receptors. We highlight the capacity of virus-neutralizing antibodies to interfere with this interaction and demonstrate a potent application using this technology. To overcome the common limitations of most virus neutralization tests, we developed a quick in vitro diagnostic assay based on the fusion of SARS-CoV-2 VLPs with susceptible vesicles to quantitate neutralizing antibodies without the need for infectious viruses or living cells. We validated this method by testing a set of COVID-19 patient serum samples, correlated the results with those of a conventional test, and found good sensitivity and specificity. Furthermore, we demonstrate that this serological assay can be adapted to a human herpesvirus, EBV, and possibly other enveloped viruses.

2.
Proc Natl Acad Sci U S A ; 120(34): e2211281120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37579175

ABSTRACT

Autophagy serves as a defense mechanism against intracellular pathogens, but several microorganisms exploit it for their own benefit. Accordingly, certain herpesviruses include autophagic membranes into their infectious virus particles. In this study, we analyzed the composition of purified virions of the Epstein-Barr virus (EBV), a common oncogenic γ-herpesvirus. In these, we found several components of the autophagy machinery, including membrane-associated LC3B-II, and numerous viral proteins, such as the capsid assembly proteins BVRF2 and BdRF1. Additionally, we showed that BVRF2 and BdRF1 interact with LC3B-II via their common protein domain. Using an EBV mutant, we identified BVRF2 as essential to assemble mature capsids and produce infectious EBV. However, BdRF1 was sufficient for the release of noninfectious viral envelopes as long as autophagy was not compromised. These data suggest that BVRF2 and BdRF1 are not only important for capsid assembly but together with the LC3B conjugation complex of ATG5-ATG12-ATG15L1 are also critical for EBV envelope release.


Subject(s)
Capsid , Epstein-Barr Virus Infections , Humans , Capsid/metabolism , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Viral Envelope/metabolism , Epstein-Barr Virus Infections/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism
3.
Vaccines (Basel) ; 11(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36992124

ABSTRACT

Epstein-Barr virus (EBV) is etiologically associated with a number of malignant and non-malignant conditions. Thus, a prophylactic vaccine against this virus could help to reduce the burden of many EBV-associated diseases. Previously, we reported that an EBV virus-like particle (VLP) vaccine was highly immunogenic and produced a strong humoral response in mice. However, since EBV does not infect mice, the efficacy of the VLP in preventing EBV infection could not be addressed. Here we examined, for the first time, the efficacy of the EBV-VLP vaccine using a novel rabbit model of EBV infection. Animals vaccinated with two doses of VLP elicited higher antibody responses to total EBV antigens compared to animals receiving one dose. Vaccinated animals also elicited both IgM and IgG to EBV-specific antigens, VCA and EBNA1. Analysis of peripheral blood and spleen for EBV copy number indicated that the viral load in both of these compartments was lower in animals receiving a 2-dose vaccine. However, the VLP vaccine was ineffective in preventing EBV infection. With several other EBV vaccine candidates currently at various stages of development and testing, we believe that the rabbit model of EBV infection could be a great platform for evaluating potential candidates.

4.
Cells ; 13(1)2023 12 21.
Article in English | MEDLINE | ID: mdl-38201224

ABSTRACT

Antiviral neutralizing antibodies (nAbs) are commonly derived from B cells developed in immunized or infected animals and humans. Fully human antibodies are preferred for clinical use as they are potentially less immunogenic. However, the function of B cells varies depending on their homing pattern and an additional hurdle for antibody discovery in humans is the source of human tissues with an immunological microenvironment. Here, we show an efficient method to pharm human antibodies using immortalized B cells recovered from Nod.Rag.Gamma (NRG) mice reconstituting the human immune system (HIS). Humanized HIS mice were immunized either with autologous engineered dendritic cells expressing the human cytomegalovirus gB envelope protein (HCMV-gB) or with Epstein-Barr virus-like particles (EB-VLP). Human B cells recovered from spleen of HIS mice were efficiently immortalized with EBV in vitro. We show that these immortalized B cells secreted human IgGs with neutralization capacities against prototypic HCMV-gB and EBV-gp350. Taken together, we show that HIS mice can be successfully used for the generation and pharming fully human IgGs. This technology can be further explored to generate antibodies against emerging infections for diagnostic or therapeutic purposes.


Subject(s)
Cancer Vaccines , Epstein-Barr Virus Infections , Humans , Animals , Mice , Spleen , Herpesvirus 4, Human , Antibodies, Viral , Immunoglobulin G , Cytomegalovirus
5.
PNAS Nexus ; 1(2)2022 May.
Article in English | MEDLINE | ID: mdl-36382127

ABSTRACT

Neutralizing antibodies (NAbs), and their concentration in sera of convalescents and vaccinees are a correlate of protection from COVID-19. The antibody concentrations in clinical samples that neutralize SARS-CoV-2 are difficult and very cumbersome to assess with conventional virus neutralization tests (cVNTs), which require work with the infectious virus and biosafety level 3 containment precautions. Alternative virus neutralization tests currently in use are mostly surrogate tests based on direct or competitive enzyme immunoassays or use viral vectors with the spike protein as the single structural component of SARS-CoV-2. To overcome these obstacles, we developed a virus-free, safe and very fast (4.5 h) in vitro diagnostic test based on engineered yet authentic SARS-CoV-2 virus-like-particles (VLPs). They share all features of the original SARS-CoV-2 but lack the viral RNA genome and thus are non-infectious. NAbs induced by infection or vaccination, but also potentially neutralizing monoclonal antibodies can be reliably quantified and assessed with ease and within hours with our test, because they interfere and block the ACE2-mediated uptake of VLPs by recipient cells. Results from the VLP neutralization test (VLPNT) showed excellent specificity and sensitivity and correlated very well with a cVNT using fully infectious SARS-CoV-2. The results also demonstrated the reduced neutralizing capacity of COVID-19 vaccinee sera against variants of concern of SARS-CoV-2 including omicron B.1.1.529, BA.1.

6.
Front Immunol ; 13: 889836, 2022.
Article in English | MEDLINE | ID: mdl-36159804

ABSTRACT

Understanding immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial to contain the COVID-19 pandemic. Using a multiplex approach, serum IgG responses against the whole SARS-CoV-2 proteome and the nucleocapsid proteins of endemic human coronaviruses (HCoVs) were measured in SARS-CoV-2-infected donors and healthy controls. COVID-19 severity strongly correlated with IgG responses against the nucleocapsid (N) of SARS-CoV-2 and possibly with the number of viral antigens targeted. Furthermore, a strong correlation between COVID-19 severity and serum responses against N of endemic alpha- but not betacoronaviruses was detected. This correlation was neither caused by cross-reactivity of antibodies, nor by a general boosting effect of SARS-CoV-2 infection on pre-existing humoral immunity. These findings raise the prospect of a potential disease progression marker for COVID-19 severity that allows for early stratification of infected individuals.


Subject(s)
Alphacoronavirus , COVID-19 , Antibodies, Viral , Antigens, Viral , Humans , Immunoglobulin G , Nucleocapsid Proteins , Pandemics , Proteome , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
7.
Front Microbiol ; 13: 955603, 2022.
Article in English | MEDLINE | ID: mdl-35935191

ABSTRACT

Epstein-Barr virus (EBV) is a double-stranded DNA virus of the Herpesviridae family. This virus preferentially infects human primary B cells and persists in the human B cell compartment for a lifetime. Latent EBV infection can lead to the development of different types of lymphomas as well as carcinomas such as nasopharyngeal and gastric carcinoma in immunocompetent and immunocompromised patients. The early phase of viral infection is crucial for EBV to establish latency, but different viral components are sensed by cellular sensors called pattern recognition receptors (PRRs) as the first line of host defense. The efficacy of innate immunity, in particular the interferon-mediated response, is critical to control viral infection initially and to trigger a broad spectrum of specific adaptive immune responses against EBV later. Despite these restrictions, the virus has developed various strategies to evade the immune reaction of its host and to establish its lifelong latency. In its different phases of infection, EBV expresses up to 44 different viral miRNAs. Some act as viral immunoevasins because they have been shown to counteract innate as well as adaptive immune responses. Similarly, certain virally encoded proteins also control antiviral immunity. In this review, we discuss how the virus governs innate immune responses of its host and exploits them to its advantage.

8.
Proc Natl Acad Sci U S A ; 119(30): e2200512119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35857872

ABSTRACT

Epstein-Barr virus (EBV) is a human tumor virus which preferentially infects resting human B cells. Upon infection in vitro, EBV activates and immortalizes these cells. The viral latent protein EBV nuclear antigen 2 (EBNA2) is essential for B cell activation and immortalization; it targets and binds the cellular and ubiquitously expressed DNA-binding protein CBF1, thereby transactivating a plethora of viral and cellular genes. In addition, EBNA2 uses its N-terminal dimerization (END) domain to bind early B cell factor 1 (EBF1), a pioneer transcription factor specifying the B cell lineage. We found that EBNA2 exploits EBF1 to support key metabolic processes and to foster cell cycle progression of infected B cells in their first cell cycles upon activation. The α1-helix within the END domain was found to promote EBF1 binding. EBV mutants lacking the α1-helix in EBNA2 can infect and activate B cells efficiently, but activated cells fail to complete the early S phase of their initial cell cycle. Expression of MYC, target genes of MYC and E2F, as well as multiple metabolic processes linked to cell cycle progression are impaired in EBVΔα1-infected B cells. Our findings indicate that EBF1 controls B cell activation via EBNA2 and, thus, has a critical role in regulating the cell cycle of EBV-infected B cells. This is a function of EBF1 going beyond its well-known contribution to B cell lineage specification.


Subject(s)
B-Lymphocytes , Epstein-Barr Virus Infections , Epstein-Barr Virus Nuclear Antigens , Gene Expression Regulation , Herpesvirus 4, Human , Proto-Oncogene Proteins c-myc , Trans-Activators , Viral Proteins , B-Lymphocytes/immunology , B-Lymphocytes/virology , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Humans , Proto-Oncogene Proteins c-myc/genetics , S Phase , Trans-Activators/genetics , Trans-Activators/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
9.
Nucleic Acids Res ; 50(1): 490-511, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34893887

ABSTRACT

In infected cells, Epstein-Barr virus (EBV) alternates between latency and lytic replication. The viral bZIP transcription factor ZEBRA (Zta, BZLF1) regulates this cycle by binding to two classes of ZEBRA response elements (ZREs): CpG-free motifs resembling the consensus AP-1 site recognized by cellular bZIP proteins and CpG-containing motifs that are selectively bound by ZEBRA upon cytosine methylation. We report structural and mutational analysis of ZEBRA bound to a CpG-methylated ZRE (meZRE) from a viral lytic promoter. ZEBRA recognizes the CpG methylation marks through a ZEBRA-specific serine and a methylcytosine-arginine-guanine triad resembling that found in canonical methyl-CpG binding proteins. ZEBRA preferentially binds the meZRE over the AP-1 site but mutating the ZEBRA-specific serine to alanine inverts this selectivity and abrogates viral replication. Our findings elucidate a DNA methylation-dependent switch in ZEBRA's transactivation function that enables ZEBRA to bind AP-1 sites and promote viral latency early during infection and subsequently, under appropriate conditions, to trigger EBV lytic replication by binding meZREs.


Subject(s)
DNA, Viral/metabolism , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/genetics , Trans-Activators/metabolism , Viral Proteins/metabolism , DNA Methylation , Gene Expression Regulation, Viral , HEK293 Cells , Humans , Protein Binding , Virus Replication
10.
PLoS Genet ; 17(12): e1009951, 2021 12.
Article in English | MEDLINE | ID: mdl-34871319

ABSTRACT

Mammalian cells release different types of vesicles, collectively termed extracellular vesicles (EVs). EVs contain cellular microRNAs (miRNAs) with an apparent potential to deliver their miRNA cargo to recipient cells to affect the stability of individual mRNAs and the cells' transcriptome. The extent to which miRNAs are exported via the EV route and whether they contribute to cell-cell communication are controversial. To address these issues, we defined multiple properties of EVs and analyzed their capacity to deliver packaged miRNAs into target cells to exert biological functions. We applied well-defined approaches to produce and characterize purified EVs with or without specific viral miRNAs. We found that only a small fraction of EVs carried miRNAs. EVs readily bound to different target cell types, but EVs did not fuse detectably with cellular membranes to deliver their cargo. We engineered EVs to be fusogenic and document their capacity to deliver functional messenger RNAs. Engineered fusogenic EVs, however, did not detectably alter the functionality of cells exposed to miRNA-carrying EVs. These results suggest that EV-borne miRNAs do not act as effectors of cell-to-cell communication.


Subject(s)
Cell Communication/genetics , Extracellular Vesicles/genetics , MicroRNAs/genetics , Transcriptome/genetics , Animals , Flow Cytometry , HEK293 Cells , Humans , Luciferases/genetics , Plasmids/genetics , RNA, Messenger/genetics , Transfection
11.
mBio ; 12(6): e0224321, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34781735

ABSTRACT

The innate immune system serves as frontline defense against pathogens, such as bacteria and viruses. Natural killer (NK) cells are a part of innate immunity and can both secrete cytokines and directly target cells for lysis. NK cells express several cell surface receptors, including NKG2D, which bind multiple ligands. People with deficiencies in NK cells are often susceptible to uncontrolled infection by herpesviruses, such as Epstein-Barr virus (EBV). Infection with EBV stimulates both innate and adaptive immunity, yet the virus establishes lifelong latent infection in memory B cells. We show that the EBV oncogene EBNA1, previously known to be necessary for maintaining EBV genomes in latently infected cells, also plays an important role in suppressing NK cell responses and cell death in newly infected cells. EBNA1 does so by downregulating the NKG2D ligands ULBP1 and ULBP5 and modulating expression of c-Myc. B cells infected with a derivative of EBV that lacks EBNA1 are more susceptible to NK cell-mediated killing and show increased levels of apoptosis. Thus, EBNA1 performs a previously unappreciated role in reducing immune response and programmed cell death after EBV infection, helping infected cells avoid immune surveillance and apoptosis and thus persist for the lifetime of the host. IMPORTANCE Epstein-Barr virus (EBV) is a ubiquitous human pathogen, infecting up to 95% of the world's adult population. Initial infection with EBV can cause infectious mononucleosis. EBV is also linked to several human malignancies, including lymphomas and carcinomas. Although infection by EBV alerts the immune system and causes an immune response, the virus persists for life in memory B cells. We show that the EBV protein EBNA1 can downregulate several components of the innate immune system linked to natural killer (NK) cells. This downregulation of NK cell activity translates to lower killing of EBV-infected cells and is likely one way that EBV escapes immune surveillance after infection. Additionally, we show that EBNA1 reduces apoptosis in newly infected B cells, allowing more of these cells to survive. Taken together, our findings uncover new functions of EBNA1 and provide insights into viral strategies to survive the initial immune response postinfection.


Subject(s)
Apoptosis , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Nuclear Antigens/immunology , Herpesvirus 4, Human/physiology , Killer Cells, Natural/immunology , Memory B Cells/virology , Cell Line , Epstein-Barr Virus Infections/physiopathology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Nuclear Antigens/genetics , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/immunology , Host-Pathogen Interactions , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/immunology , Killer Cells, Natural/cytology , Memory B Cells/cytology , Memory B Cells/immunology
12.
EMBO Rep ; 22(12): e53007, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34605140

ABSTRACT

While Epstein-Barr virus (EBV) establishes a life-long latent infection in apparently healthy human immunocompetent hosts, immunodeficient individuals are at particular risk to develop lymphoproliferative B-cell malignancies caused by EBV. A key EBV protein is the transcription factor EBV nuclear antigen 2 (EBNA2), which initiates B-cell proliferation. Here, we combine biochemical, cellular, and in vivo experiments demonstrating that the mitotic polo-like kinase 1 (PLK1) binds to EBNA2, phosphorylates its transactivation domain, and thereby inhibits its biological activity. EBNA2 mutants that impair PLK1 binding or prevent EBNA2 phosphorylation are gain-of-function mutants. They exhibit enhanced transactivation capacities, accelerate the proliferation of infected B cells, and promote the development of monoclonal B-cell lymphomas in infected mice. Thus, PLK1 coordinates the activity of EBNA2 to attenuate the risk of tumor incidences in favor of the establishment of latency in the infected but healthy host.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Animals , Cell Cycle Proteins , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism , Herpesvirus 4, Human/metabolism , Mice , Phosphorylation , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins , Virus Latency , Polo-Like Kinase 1
13.
Nucleic Acids Res ; 49(18): 10657-10676, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34530456

ABSTRACT

Epstein-Barr virus (EBV) is a human herpesvirus associated with human cancers worldwide. Ex vivo, the virus efficiently infects resting human B lymphocytes and induces their continuous proliferation. This process is accompanied by a global reprogramming of cellular gene transcription. However, very little is known on the impact of EBV infection on the regulation of alternative splicing, a pivotal mechanism that plays an essential role in cell fate determination and is often deregulated in cancer. In this study, we have developed a systematic time-resolved analysis of cellular mRNA splice variant expression during EBV infection of resting B lymphocytes. Our results reveal that major modifications of alternative splice variant expression appear as early as day 1 post-infection and suggest that splicing regulation provides-besides transcription-an additional mechanism of gene expression regulation at the onset of B cell activation and proliferation. We also report a role for the viral proteins, EBNA2 and EBNA-LP, in the modulation of specific alternative splicing events and reveal a previously unknown function for EBNA-LP-together with the RBM4 splicing factor-in the alternative splicing regulation of two important modulators of cell proliferation and apoptosis respectively, NUMB and BCL-X.


Subject(s)
Alternative Splicing , B-Lymphocytes/virology , Herpesvirus 4, Human/physiology , Viral Proteins/metabolism , Cells, Cultured , Exons , Humans , Membrane Proteins/genetics , RNA Splice Sites , RNA-Binding Proteins/metabolism , Viral Proteins/physiology
14.
PLoS Pathog ; 17(4): e1009117, 2021 04.
Article in English | MEDLINE | ID: mdl-33857265

ABSTRACT

Gene editing is now routine in all prokaryotic and metazoan cells but has not received much attention in immune cells when the CRISPR-Cas9 technology was introduced in the field of mammalian cell biology less than ten years ago. This versatile technology has been successfully adapted for gene modifications in human myeloid cells and T cells, among others, but applications to human primary B cells have been scarce and limited to activated B cells. This limitation has precluded conclusive studies into cell activation, differentiation or cell cycle control in this cell type. We report on highly efficient, simple and rapid genome engineering in primary resting human B cells using nucleofection of Cas9 ribonucleoprotein complexes, followed by EBV infection or culture on CD40 ligand feeder cells to drive in vitro B cell survival. We provide proof-of-principle of gene editing in quiescent human B cells using two model genes: CD46 and CDKN2A. The latter encodes the cell cycle regulator p16INK4a which is an important target of Epstein-Barr virus (EBV). Infection of B cells carrying a knockout of CDKN2A with wildtype and EBNA3 oncoprotein mutant strains of EBV allowed us to conclude that EBNA3C controls CDKN2A, the only barrier to B cell proliferation in EBV infected cells. Together, this approach enables efficient targeting of specific gene loci in quiescent human B cells supporting basic research as well as immunotherapeutic strategies.


Subject(s)
B-Lymphocytes/virology , CRISPR-Cas Systems/genetics , Epstein-Barr Virus Infections/genetics , Gene Editing , Lymphocyte Activation/genetics , Epstein-Barr Virus Nuclear Antigens/genetics , Gene Editing/methods , Gene Knockout Techniques/methods , Herpesvirus 4, Human/genetics , Humans , Lymphocyte Activation/immunology , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Latency/genetics
15.
Blood ; 137(23): 3225-3236, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33827115

ABSTRACT

Primary immunodeficiencies in the costimulatory molecule CD27 and its ligand, CD70, predispose for pathologies of uncontrolled Epstein-Barr virus (EBV) infection in nearly all affected patients. We demonstrate that both depletion of CD27+ cells and antibody blocking of CD27 interaction with CD70 cause uncontrolled EBV infection in mice with reconstituted human immune system components. While overall CD8+ T-cell expansion and composition are unaltered after antibody blocking of CD27, only some EBV-specific CD8+ T-cell responses, exemplified by early lytic EBV antigen BMLF1-specific CD8+ T cells, are inhibited in their proliferation and killing of EBV-transformed B cells. This suggests that CD27 is not required for all CD8+ T-cell expansions and cytotoxicity but is required for a subset of CD8+ T-cell responses that protect us from EBV pathology.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epstein-Barr Virus Infections/immunology , Herpesvirus 4, Human/immunology , Immunity, Cellular , Phosphoproteins/immunology , Trans-Activators/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology , Animals , B-Lymphocytes/immunology , Cell Transformation, Viral/genetics , Cell Transformation, Viral/immunology , Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human/genetics , Humans , Mice , Mice, Inbred NOD , Mice, Transgenic , Phosphoproteins/genetics , Trans-Activators/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics
16.
mBio ; 12(2)2021 03 30.
Article in English | MEDLINE | ID: mdl-33785626

ABSTRACT

Epstein-Barr virus (EBV), a human herpesvirus, encodes 44 microRNAs (miRNAs), which regulate many genes with various functions in EBV-infected cells. Multiple target genes of the EBV miRNAs have been identified, some of which play important roles in adaptive antiviral immune responses. Using EBV mutant derivatives, we identified additional roles of viral miRNAs in governing versatile type I interferon (IFN) responses upon infection of human primary mature B cells. We also found that Epstein-Barr virus-encoded small RNAs (EBERs) and LF2, viral genes with previously reported functions in inducing or regulating IFN-I pathways, had negligible or even contrary effects on secreted IFN-α in our model. Data mining and Ago PAR-CLIP experiments uncovered more than a dozen previously uncharacterized, direct cellular targets of EBV miRNA associated with type I IFN pathways. We also identified indirect targets of EBV miRNAs in B cells, such as TRL7 and TLR9, in the prelatent phase of infection. The presence of epigenetically naive, non-CpG methylated viral DNA was essential to induce IFN-α secretion during EBV infection in a TLR9-dependent manner. In a newly established fusion assay, we verified that EBV virions enter a subset of plasmacytoid dendritic cells (pDCs) and determined that these infected pDCs are the primary producers of IFN-α in EBV-infected peripheral blood mononuclear cells. Our findings document that many EBV-encoded miRNAs regulate type I IFN response in newly EBV infected primary human B cells in the prelatent phase of infection and dampen the acute release of IFN-α in pDCs upon their encounter with EBV.IMPORTANCE Acute antiviral functions of all nucleated cells rely on type I interferon (IFN-I) pathways triggered upon viral infection. Host responses encompass the sensing of incoming viruses, the activation of specific transcription factors that induce the transcription of IFN-I genes, the secretion of different IFN-I types and their recognition by the heterodimeric IFN-α/ß receptor, the subsequent activation of JAK/STAT signaling pathways, and, finally, the transcription of many IFN-stimulated genes (ISGs). In sum, these cellular functions establish a so-called antiviral state in infected and neighboring cells. To counteract these cellular defense mechanisms, viruses have evolved diverse strategies and encode gene products that target antiviral responses. Among such immune-evasive factors are viral microRNAs (miRNAs) that can interfere with host gene expression. We discovered that multiple miRNAs of Epstein-Barr virus (EBV) control over a dozen cellular genes that contribute to the antiviral states of immune cells, specifically B cells and plasmacytoid dendritic cells (pDCs). We identified the viral DNA genome as the activator of IFN-α and question the role of abundant EBV EBERs, that, contrary to previous reports, do not have an apparent inducing function in the IFN-I pathway early after infection.


Subject(s)
Epstein-Barr Virus Infections/metabolism , Herpesvirus 4, Human/metabolism , Interferon-alpha/metabolism , Interferon-beta/metabolism , MicroRNAs/metabolism , RNA, Viral/metabolism , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/virology , Gene Expression Regulation, Viral , Herpesvirus 4, Human/genetics , Host-Pathogen Interactions , Humans , Interferon-alpha/genetics , Interferon-beta/genetics , MicroRNAs/genetics , RNA, Viral/genetics , Signal Transduction , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism
17.
Elife ; 102021 03 08.
Article in English | MEDLINE | ID: mdl-33683199

ABSTRACT

Eukaryotic DNA replication initiates during S phase from origins that have been licensed in the preceding G1 phase. Here, we compare ChIP-seq profiles of the licensing factors Orc2, Orc3, Mcm3, and Mcm7 with gene expression, replication timing, and fork directionality profiles obtained by RNA-seq, Repli-seq, and OK-seq. Both, the origin recognition complex (ORC) and the minichromosome maintenance complex (MCM) are significantly and homogeneously depleted from transcribed genes, enriched at gene promoters, and more abundant in early- than in late-replicating domains. Surprisingly, after controlling these variables, no difference in ORC/MCM density is detected between initiation zones, termination zones, unidirectionally replicating regions, and randomly replicating regions. Therefore, ORC/MCM density correlates with replication timing but does not solely regulate the probability of replication initiation. Interestingly, H4K20me3, a histone modification proposed to facilitate late origin licensing, was enriched in late-replicating initiation zones and gene deserts of stochastic replication fork direction. We discuss potential mechanisms specifying when and where replication initiates in human cells.


Subject(s)
DNA Replication/genetics , Minichromosome Maintenance Proteins/genetics , Models, Genetic , Origin Recognition Complex/genetics , Cell Line, Tumor , Humans , Minichromosome Maintenance Proteins/metabolism , Origin Recognition Complex/metabolism
18.
Nucleic Acids Res ; 49(6): 3217-3241, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33675667

ABSTRACT

Epstein-Barr virus (EBV), a herpes virus also termed HHV 4 and the first identified human tumor virus, establishes a stable, long-term latent infection in human B cells, its preferred host. Upon induction of EBV's lytic phase, the latently infected cells turn into a virus factory, a process that is governed by EBV. In the lytic, productive phase, all herpes viruses ensure the efficient induction of all lytic viral genes to produce progeny, but certain of these genes also repress the ensuing antiviral responses of the virally infected host cells, regulate their apoptotic death or control the cellular transcriptome. We now find that EBV causes previously unknown massive and global alterations in the chromatin of its host cell upon induction of the viral lytic phase and prior to the onset of viral DNA replication. The viral initiator protein of the lytic cycle, BZLF1, binds to >105 binding sites with different sequence motifs in cellular chromatin in a concentration dependent manner implementing a binary molar switch probably to prevent noise-induced erroneous induction of EBV's lytic phase. Concomitant with DNA binding of BZLF1, silent chromatin opens locally as shown by ATAC-seq experiments, while previously wide-open cellular chromatin becomes inaccessible on a global scale within hours. While viral transcripts increase drastically, the induction of the lytic phase results in a massive reduction of cellular transcripts and a loss of chromatin-chromatin interactions of cellular promoters with their distal regulatory elements as shown in Capture-C experiments. Our data document that EBV's lytic cycle induces discrete early processes that disrupt the architecture of host cellular chromatin and repress the cellular epigenome and transcriptome likely supporting the efficient de novo synthesis of this herpes virus.


Subject(s)
Chromatin/virology , Gene Expression Regulation , Herpesvirus 4, Human/physiology , Trans-Activators/metabolism , Transcriptome , Binding Sites , Cell Line , Chromatin/chemistry , Chromatin/metabolism , DNA/metabolism , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Humans
19.
Biomark Res ; 8: 46, 2020.
Article in English | MEDLINE | ID: mdl-32944247

ABSTRACT

BACKGROUND: Clinically relevant methods are not available that prioritize and validate potential therapeutic targets for individual tumors, from the vast amount of tumor descriptive expression data. METHODS: We established inducible transgene expression in clinically relevant patient-derived xenograft (PDX) models in vivo to fill this gap. RESULTS: With this technique at hand, we analyzed the role of the transcription factor Krüppel-like factor 4 (KLF4) in B-cell acute lymphoblastic leukemia (B-ALL) PDX models at different disease stages. In competitive preclinical in vivo trials, we found that re-expression of wild type KLF4 reduced the leukemia load in PDX models of B-ALL, with the strongest effects being observed after conventional chemotherapy in minimal residual disease (MRD). A nonfunctional KLF4 mutant had no effect on this model. The re-expression of KLF4 sensitized tumor cells in the PDX model towards systemic chemotherapy in vivo. It is of major translational relevance that azacitidine upregulated KLF4 levels in the PDX model and a KLF4 knockout reduced azacitidine-induced cell death, suggesting that azacitidine can regulate KLF4 re-expression. These results support the application of azacitidine in patients with B-ALL as a therapeutic option to regulate KLF4. CONCLUSION: Genetic engineering of PDX models allows the examination of the function of dysregulated genes like KLF4 in a highly clinically relevant translational context, and it also enables the selection of therapeutic targets in individual tumors and links their functions to clinically available drugs, which will facilitate personalized treatment in the future.

20.
Mol Ther Oncolytics ; 18: 504-524, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32953984

ABSTRACT

Epstein-Barr virus (EBV) is a latent and oncogenic human herpesvirus. Lytic viral protein expression plays an important role in EBV-associated malignancies. The EBV envelope glycoprotein 350 (gp350) is expressed abundantly during EBV lytic reactivation and sporadically on the surface of latently infected cells. Here we tested T cells expressing gp350-specific chimeric antigen receptors (CARs) containing scFvs derived from two novel gp350-binding, highly neutralizing monoclonal antibodies. The scFvs were fused to CD28/CD3ζ signaling domains in a retroviral vector. The produced gp350CAR-T cells specifically recognized and killed gp350+ 293T cells in vitro. The best-performing 7A1-gp350CAR-T cells were cytotoxic against the EBV+ B95-8 cell line, showing selectivity against gp350+ cells. Fully humanized Nod.Rag.Gamma mice transplanted with cord blood CD34+ cells and infected with the EBV/M81/fLuc lytic strain were monitored dynamically for viral spread. Infected mice recapitulated EBV-induced lymphoproliferation, tumor development, and systemic inflammation. We tested adoptive transfer of autologous CD8+gp350CAR-T cells administered protectively or therapeutically. After gp350CAR-T cell therapy, 75% of mice controlled or reduced EBV spread and showed lower frequencies of EBER+ B cell malignant lymphoproliferation, lack of tumor development, and reduced inflammation. In summary, CD8+gp350CAR-T cells showed proof-of-concept preclinical efficacy against impending EBV+ lymphoproliferation and lymphomagenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...