Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Lipid Res ; 60(11): 1818-1828, 2019 11.
Article in English | MEDLINE | ID: mdl-31484695

ABSTRACT

Lysophosphatidic acids (LPAs) are bioactive radyl hydrocarbon-substituted derivatives of glycerol 3-phosphate. LPA metabolism and signaling are implicated in heritable risk of coronary artery disease. Genetic and pharmacological inhibition of these processes attenuate experimental atherosclerosis. LPA accumulates in atheromas, which may be a consequence of association with LDLs. The source, regulation, and biological activity of LDL-associated LPA are unknown. We examined the effects of experimental hyperlipidemia on the levels and distribution of circulating LPA in mice. The majority of plasma LPA was associated with albumin in plasma from wild-type mice fed normal chow. LDL-associated LPA was increased in plasma from high-fat Western diet-fed mice that are genetically prone to hyperlipidemia (LDL receptor knockout or activated proprotein convertase subtilisin/kexin type 9-overexpressing C57Bl6). Adipose-specific deficiency of the ENPP2 gene encoding the LPA-generating secreted lysophospholipase D, autotaxin (ATX), attenuated these Western diet-dependent increases in LPA. ATX-dependent increases in LDL-associated LPA were observed in isolated incubated plasma. ATX acted directly on LDL-associated lysophospholipid substrates in vitro. LDL from all human subjects examined contained LPA and was decreased by lipid-lowering drug therapies. Human and mouse plasma therefore contains a diet-sensitive LDL-associated LPA pool that might contribute to the cardiovascular disease-promoting effects of LPA.


Subject(s)
Diet , Hyperlipidemias/blood , Lysophospholipids/blood , Adipose Tissue/metabolism , Animals , Cohort Studies , Diet, Western/adverse effects , Humans , Hydrolysis , Hyperlipidemias/metabolism , Hyperlipidemias/pathology , Hypolipidemic Agents/pharmacology , Lipoproteins, LDL/blood , Mice , Mice, Inbred C57BL , Phosphoric Diester Hydrolases/metabolism
2.
Sci Rep ; 8: 46970, 2018 May 17.
Article in English | MEDLINE | ID: mdl-29769641

ABSTRACT

This corrects the article DOI: 10.1038/srep25523.

3.
J Med Chem ; 61(7): 2694-2706, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29547693

ABSTRACT

We previously reported the discovery, validation, and structure-activity relationships of a series of piperidinyl ureas that potently inhibit the DCN1-UBE2M interaction. We demonstrated that compound 7 inhibits both the DCN1-UBE2M protein-protein interaction and DCN1-mediated cullin neddylation in biochemical assays and reduces levels of steady-state cullin neddylation in a squamous carcinoma cell line harboring DCN1 amplification. Although compound 7 exhibits good solubility and permeability, it is rapidly metabolized in microsomal models (CLint = 170 mL/min/kg). This work lays out the discovery of an orally bioavailable analogue, NAcM-OPT (67). Compound 67 retains the favorable biochemical and cellular activity of compound 7 but is significantly more stable both in vitro and in vivo. Compound 67 is orally bioavailable, well tolerated in mice, and currently used to study the effects of acute pharmacologic inhibition of the DCN1-UBE2M interaction on the NEDD8/CUL pathway.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cullin Proteins/drug effects , Proto-Oncogene Proteins/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Biological Availability , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Drug Discovery , Drug Screening Assays, Antitumor , Female , Humans , Intracellular Signaling Peptides and Proteins , Lung Neoplasms/drug therapy , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , NEDD8 Protein/antagonists & inhibitors , NEDD8 Protein/drug effects , Proteins , Proto-Oncogene Proteins/metabolism , Structure-Activity Relationship , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors , Urea/analogs & derivatives , Urea/chemistry
4.
Sci Rep ; 6: 25523, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27160857

ABSTRACT

With combination therapies becoming increasingly vital to understanding and combatting disease, a reliable method for analyzing combined dose response is essential. The importance of combination studies both in basic and translational research necessitates a method that can be applied to a wide range of experimental and analytical conditions. However, despite increasing demand, no such unified method has materialized. Here we introduce the Bivariate Response to Additive Interacting Doses (BRAID) model, a response surface model that combines the simplicity and intuitiveness needed for basic interaction classifications with the versatility and depth needed to analyze a combined response in the context of pharmacological and toxicological constraints. We evaluate the model in a series of simulated combination experiments, a public combination dataset, and several experiments on Ewing's Sarcoma. The resulting interaction classifications are more consistent than those produced by traditional index methods, and show a strong relationship between compound mechanisms and nature of interaction. Furthermore, analysis of fitted response surfaces in the context of pharmacological constraints yields a more concrete prediction of combination efficacy that better agrees with in vivo evaluations.


Subject(s)
Algorithms , Drug Therapy, Combination , Models, Statistical , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Computer Simulation , Datasets as Topic , Drug Antagonism , Drug Synergism , Drug Therapy, Combination/adverse effects , Drug Therapy, Combination/methods , Humans , Sarcoma, Ewing/drug therapy , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...