Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Pacing Clin Electrophysiol ; 44(8): 1320-1330, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34184293

ABSTRACT

BACKGROUND: The INGEVITY lead (Boston Scientific, St Paul, MN, USA) has excellent clinical performance. However, its single filar design results in decreased lead tensile strength and a possible challenging extraction. This study's goal is to evaluate techniques for extracting the INGEVITY lead. METHODS: Two- and three-dimensional models were created to simulate lead extraction from a right atrial appendage lead implant with a left subclavian approach and lead/fibrosis attachment sites. Standard and unique lead extraction preparation strategies were evaluated. Traction forces were measured from a superior approach alone or in combination with a femoral approach. RESULTS: For lead extraction via the superior approach, leaving the terminal on the lead was the only factor influencing maximum tolerated load (p-value = .0007). Scar attachment provided greater lead tensile strength by transferring traction loading forces to the polyurethane outer insulation but dependent on insulation integrity. The strongest extraction rail was seen with a simulated femoral snaring of a locking stylet within the INGEVITY lead. Deployed screw retraction was most successful by rotating a Philips LLD#2 stylet (Philips Healthcare, Amsterdam, Netherlands) within the lead. CONCLUSION: Results from in vitro simulations of INGEVITY lead extraction from an atrial location found the lead has low maximum tensile strength resulting in a poor extraction rail with common extraction tools and methods. However, the strength of the INGEVITY Lead extraction rail can be significantly increased by leaving the lead terminal intact and femoral snaring of the locking stylet within the lead. Such techniques may improve extraction of the INGEVITY lead.


Subject(s)
Device Removal/methods , Electrodes, Implanted , Equipment Design , Equipment Failure , Heart Atria , Models, Cardiovascular , Tensile Strength
2.
ESC Heart Fail ; 8(2): 1571-1581, 2021 04.
Article in English | MEDLINE | ID: mdl-33619893

ABSTRACT

AIMS: This study aims to characterize the range of implantable device-based sensor values including heart sounds, markers of ventilation, thoracic impedance, activity, and heart rate for patients with heart failure (HF) when patients were deemed to be in clinically stable periods against the time course of acute decompensation and recovery from HF events. METHODS AND RESULTS: The MultiSENSE trial followed 900 patients implanted with a COGNIS CRT-D for up to 1 year. Chronic, ambulatory diagnostic sensor data were collected and evaluated during clinically stable periods (CSP: unchanged NYHA classification, no adverse events, and weight change ≤2.27 kg), and in the timeframe leading up to and following HF events (HF admissions or unscheduled visits with intravenous HF treatment). Physiologic sensor data from 1667 CSPs occurring in 676 patients were compared with those data leading up to and following 192 HF events in 106 patients. Overall, the mean age was 66.6 years, and the population were predominantly male (73%). Patients were primarily in NYHA II (67%), with a mean LVEF of 29.6% and median NT-proBNP of 754.5 pg/mL. Sensor values during CSP were poorer in patients who had HF events during the study period than those without HF events, including first heart sound (S1: 2.18 ± 0.84 mG vs. 2.62 ± 0.95 mG, P = 0.002), third heart sound (S3: 1.13 ± 0.36 mG vs. 0.91 ± 0.30 mG, P < 0.001), thoracic impedance (45.66 ± 8.78 Ohm vs. 50.33 ± 8.43 Ohm, P < 0.001), respiratory rate (19.09 ± 3.10 br/min vs. 17.66 ± 2.39 br/min, P = 0.002), night time heart rate (73.39 ± 8.36 b.p.m. vs. 69.56 ± 8.09 b.p.m., P = 0.001), patient activity (1.69 ± 1.84 h vs. 2.56 ± 2.20 h, P = 0.006), and HeartLogic index (11.07 ± 12.14 vs. 5.31 ± 5.13, P = 0.001). Sensor parameters measured worsening status leading up to HF events with recovery of values following treatment. CONCLUSIONS: Device-based physiologic sensors not only revealed progressive worsening leading up to HF events but also differentiated patients at increased risk of HF events when presumed to be clinically stable.


Subject(s)
Heart Failure , Aged , Heart Failure/diagnosis , Heart Rate , Hospitalization , Humans , Male
3.
Circ Heart Fail ; 11(7): e004669, 2018 07.
Article in English | MEDLINE | ID: mdl-30002113

ABSTRACT

BACKGROUND: Care of heart failure (HF) patients results in a high burden on healthcare resources, and estimating prognosis is becoming increasingly important to triage resources wisely. Natriuretic peptides are recommended prognosticators in chronic HF. Our objective was to evaluate whether a multisensor HF index and alert algorithm (HeartLogic) replaces or augments current HF risk stratification. METHODS AND RESULTS: MultiSENSE (Multisensor Chronic Evaluation in Ambulatory Heart Failure Patients) enrolled 900 patients with cardiac resynchronization therapy defibrillators enabled for collection of heart sounds, respiration, thoracic impedance, heart rate, and activity data. The HeartLogic algorithm automatically calculated a daily HF index and identified periods IN or OUT of an active alert state relative to a configurable threshold. Patients experienced 192 independently adjudicated HF events (average rate, 0.20/patient-year [pt-yr]) during 1 year of follow-up. HF event rates while IN alert was 10-fold higher than OUT of alert (0.80 versus 0.08 events/pt-yr). Combined with NT-proBNP (N-terminal pro-B-type natriuretic peptide) at enrollment (relative to 1000 pg/mL threshold, event rate was 0.42 [HIGH] versus 0.07 [LOW] events/pt-yr), substratification found the lowest risk group (LOW NT-proBNP and OUT of alert) experienced 0.02 events/pt-yr, whereas the highest risk group (HIGH NT-proBNP and IN alert) was associated with a 50-fold increased risk of an HF event (1.00 events/pt-yr) relative to the lowest risk group. CONCLUSIONS: Dynamic assessment using implantable device sensors within HeartLogic by itself or in conjunction with NT-proBNP measurements can identify time-intervals when patients are at significantly increased risk of worsening HF and potentially better triage resources to this vulnerable patient population. CLINICAL TRIAL REGISTRATION: https://www.clinicaltrials.gov. Unique identifier: NCT01128166.


Subject(s)
Algorithms , Cardiac Resynchronization Therapy , Heart Failure/physiopathology , Heart Rate/physiology , Aged , Cardiac Resynchronization Therapy/adverse effects , Clinical Trials as Topic , Female , Heart Failure/diagnosis , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Prognosis , Risk Assessment , Risk Factors
4.
J Am Heart Assoc ; 7(10)2018 05 10.
Article in English | MEDLINE | ID: mdl-29748177

ABSTRACT

BACKGROUND: The transvenous implantable cardioverter-defibrillator (ICD) lead is the most common source of complications in a traditional ICD system. This investigation aims to determine the incidence, predictors, and costs associated with these complications using a large insurance database. METHODS AND RESULTS: Data from the OptumLabs™ Data Warehouse, which include diagnosis, physician and procedure codes, and claims from patient hospitalizations, were analyzed. Patients with a de novo ICD or cardiac resynchronization therapy defibrillator implanted from January 1, 2003, through June 30, 2015, were included; those who did not have continuous coverage beginning 1 year before implantation were excluded, resulting in 40 837 patients followed up over an average of 2.3±2.1 years. Patients were followed up until they had the procedure or their last active date in the database. Of 20 580 device procedures, 2165 (5.3%) and 771 (1.9%) had mechanical and infectious complications, respectively. The 5-year rate of freedom from mechanical complication was 92.0% and 89.3% for ICDs and cardiac resynchronization therapy defibrillators, respectively. Infectious complications were more likely in patients with a history of atrial fibrillation, diabetes mellitus, and renal disease, and the risk increased with subsequent device procedures. Younger age, female sex, lack of comorbidities, and implantations between 2003 and 2008 were associated with more mechanical complications. CONCLUSIONS: Incidence of mechanical and infectious complications of transvenous ICD leads over long-term follow-up is much higher in the real world than in clinical studies. In our study cohort, 1 of 4 transvenous ICD leads had mechanical complications when followed up to 10 years. The high rate of reintervention leads to additional complications.


Subject(s)
Defibrillators, Implantable/trends , Electric Countershock/trends , Prosthesis Failure/trends , Prosthesis-Related Infections/epidemiology , Administrative Claims, Healthcare , Aged , Data Warehousing , Defibrillators, Implantable/adverse effects , Defibrillators, Implantable/economics , Electric Countershock/adverse effects , Electric Countershock/economics , Electric Countershock/instrumentation , Female , Health Care Costs/trends , Humans , Incidence , Male , Middle Aged , Progression-Free Survival , Prosthesis-Related Infections/diagnosis , Prosthesis-Related Infections/economics , Prosthesis-Related Infections/therapy , Risk Assessment , Risk Factors , Time Factors , United States/epidemiology
5.
J Cardiovasc Electrophysiol ; 27(10): 1199-1205, 2016 10.
Article in English | MEDLINE | ID: mdl-27434039

ABSTRACT

INTRODUCTION: The safety and efficacy of a novel family of quadripolar left ventricular (LV) pacing leads designed to pace from nonapical regions of the LV with low pacing capture thresholds was studied in patients undergoing implantation of a cardiac resynchronization therapy defibrillator (CRT-D). METHODS AND RESULTS: Patients receiving a CRT-D were implanted with 1 of 3 ACUITY X4 leads (Spiral Long, Spiral Short, or Straight), designed to address coronary venous anatomical variability. Electrical performance and LV lead related complications were evaluated 3 and 6 months post implantation, respectively. 764 patients (68 ± 11 years, 66% male) were enrolled; 738 (97%) successfully implanted with an ACUITY X4 lead (Spiral L, n = 239, 31%; Spiral S, n = 281, 37%; Straight, n = 218, 29%). A targeted threshold ≤2.5 V was achieved in 644 (94%) patients. The median threshold from the best proximal electrode was lower than the tip electrode (0.9 V [IQR 0.7, 1.3] vs. 1.3 V [IQR 0.7, 2.5], p< 0.001) on Spiral leads. Irrespective of lead implanted, one of the proximal electrodes was the programmed cathode in most patients. The overall LV complication-free rate was 98%. LV lead dislodgment occurred in 8 (1%) patients. PNS occurred in 58 (8%) patients, but only 3 (0.4%) patients required surgical intervention. CONCLUSION: The ACUITY X4 LV leads had low pacing thresholds particularly from proximal electrodes, a high incidence of pacing from the nondistal electrode, and low likelihood of dislodgment or PNS requiring surgical intervention. (ClinicalTrials.gov Identifier: NCT02071173).


Subject(s)
Cardiac Resynchronization Therapy Devices , Cardiac Resynchronization Therapy , Defibrillators, Implantable , Electric Countershock/instrumentation , Heart Failure/therapy , Ventricular Dysfunction, Left/therapy , Ventricular Function, Left , Aged , Cardiac Resynchronization Therapy/adverse effects , Coronary Angiography , Disease-Free Survival , Electric Countershock/adverse effects , Female , Heart Failure/diagnosis , Heart Failure/physiopathology , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Prospective Studies , Prosthesis Design , Prosthesis Failure , Risk Factors , Time Factors , Treatment Outcome , United States , Ventricular Dysfunction, Left/diagnosis , Ventricular Dysfunction, Left/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...