Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 127(38): 19072-19087, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37791098

ABSTRACT

Sn-doped zeolites are potent Lewis acid catalysts for important reactions in the context of green and sustainable chemistry; however, their synthesis can have long reaction times and harsh chemical requirements, presenting an obstacle to scale-up and industrial application. To incorporate Sn into the ß zeolite framework, solid-state incorporation (SSI) has recently been demonstrated as a fast and solvent-free synthetic method, with no impairment to the high activity and selectivity associated with Sn-ß for its catalytic applications. Here, we report an ab initio computational study that combines periodic density functional theory with high-level embedded-cluster quantum/molecular mechanical (QM/MM) to elucidate the mechanistic steps in the synthetic process. Initially, once the Sn(II) acetate precursor coordinates to the ß framework, acetic acid forms via a facile hydrogen transfer from the ß framework onto the monodentate acetate ligand, with low kinetic barriers for subsequent dissociation of the ligand from the framework-bound Sn. Ketonization of the dissociated acetic acid can occur over the Lewis acidic Sn(II) site to produce CO2 and acetone with a low kinetic barrier (1.03 eV) compared to a gas-phase process (3.84 eV), helping to explain product distributions in good accordance with experimental analysis. Furthermore, we consider the oxidation of the Sn(II) species to form the Sn(IV) active site in the material by O2- and H2O-mediated mechanisms. The kinetic barrier for oxidation via H2 release is 3.26 eV, while the H2O-mediated dehydrogenation process has a minimum barrier of 1.38 eV, which indicates the possible role of residual H2O in the experimental observations of SSI synthesis. However, we find that dehydrogenation is facilitated more significantly by the presence of dioxygen (O2), introduced in the compressed air gas feed, via a two-step process oxidation process that forms H2O2 as an intermediate and has greatly reduced kinetic barriers of 0.25 and 0.26 eV. The results provide insight into how Sn insertion into ß occurs during SSI and demonstrate the possible mechanism of top-down synthetic procedures for metal insertion into zeolites.

2.
ACS Sustain Chem Eng ; 10(14): 4391-4403, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35433137

ABSTRACT

The retro-aldol fragmentation of glucose is a complex reaction of industrial relevance, which provides a potentially sustainable route for the production of α-hydroxyester compounds of relevance to the green polymer industry, such as methyl lactate and methyl vinyl glycolate. Although the zeolite catalyst, Sn-Beta, has shown itself to be a promising catalyst for this process, important information concerning the stability of the catalyst during continuous operation is not yet known, and improvements to its yield of retro-aldol products are also essential. Here, we perform detailed spectroscopic studies of a selection of Sn-Beta catalysts and evaluate their performances for the retro-aldol fragmentation of glucose under continuous processing conditions, with the dual aims of developing new structure-activity-lifetime relationships for the reaction and maximizing the productivity and selectivity of the process. Kinetic studies are performed under both established reaction conditions and in the presence of additional promoters, including water and alkali salts. Generally, this study demonstrates that the reaction conditions and choice of catalyst cannot be optimized in isolation, since each catalyst explored in this study responds differently to each particular process perturbation. However, by evaluating each type of the Sn-Beta catalyst under each set of reaction conditions, we reveal that postsynthetic Sn-Beta catalysts exhibit the best levels of performance when activity, selectivity, and stability are taken into account. Specifically, the best levels of performance are obtained with a postsynthetic Sn-Beta catalyst that is preactivated in a flow of methanol prior to reaction, which provides α-hydroxyester yields over 90% at the early stages of continuous operation and operates at high yield and selectivity for over 60 h on stream. Space-time-yields over two orders of magnitude higher than any previously reported for this reaction are achieved, setting a new benchmark in terms of the retro-aldol fragmentation of glucose.

3.
Chem Commun (Camb) ; 57(90): 11952-11955, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34699581

ABSTRACT

Stable emissive carbon nanodots were generated in zeolite crystals using near infrared photon irradiation gradually converting the occluded organic template, originally used to synthesize the zeolite crystals, into discrete luminescent species consisting of nano-sized carbogenic fluorophores, as ascertained using Raman microscopy, and steady-state and time-resolved spectroscopic techniques. Photoactivation in a confocal laser fluorescence microscope allows 3D resolved writing of luminescent carbon nanodot patterns inside zeolites providing a cost-effective and non-toxic alternative to previously reported metal-based nanoclusters confined in zeolites, and opens up opportunities in bio-labelling and sensing applications.

4.
Angew Chem Int Ed Engl ; 59(45): 20017-20023, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32686886

ABSTRACT

The isomerisation of glucose to fructose is a critical step towards manufacturing petroleum-free chemicals from lignocellulosic biomass. Herein we show that Hf-containing zeolites are unique catalysts for this reaction, enabling true thermodynamic equilibrium to be achieved in a single step during intensified continuous operation, which no chemical or biological catalyst has yet been able to achieve. Unprecedented single-pass yields of 58 % are observed at a fructose selectivity of 94 %, and continuous operation for over 100 hours is demonstrated. The unexpected performance of the catalyst is realised following a period of activation within the reactor, during which time interaction with the solvent generates a state of activity that is absent in the synthesised catalyst. Mechanistic studies by X-ray absorption spectroscopy, chemisorption FTIR, operando UV/Vis and 1 H-13 C HSQC NMR spectroscopy indicate that activity arises from isolated HfIV atoms with monofunctional acidic properties.

5.
ChemSusChem ; 12(22): 4953-4961, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31379122

ABSTRACT

Although the selective oxidation of alcohols to carbonyl compounds is a critical reaction, it is often plagued by several challenges related to sustainability. Here, the continuous, acceptorless dehydrogenation of alcohols to carbonyl compounds over heterogeneous catalysts was demonstrated, in the absence of oxidants, bases or acceptor molecules. In addition to improving selectivity and atom efficiency, the absence of an acceptor resulted in the co-production of molecular H2 , a clean energy source, and permitted dehydrogenation to proceed at >98 % selectivity at turnover frequency values amongst the highest in the literature. Moreover, excellent durability was observed during continuous operation over 48 h, reaching space-time yields of 0.683 g(product) mL-1 h-1 , better than the state of the art by over two orders of magnitude. Alongside these breakthroughs, the basic kinetic parameters of the reaction were also determined, allowing some of the elementary reaction steps to be identified.

6.
R Soc Open Sci ; 5(2): 171315, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29515849

ABSTRACT

Porous silicates containing dilute amounts of tri-, tetra- and penta-valent metal sites, such as TS-1, Sn-ß and Fe-ZSM-5, have recently emerged as state of the art catalysts for a variety of sustainable chemical transformations. In contrast with their aluminosilicate cousins, which are widely employed throughout the refinery industry for gas-phase catalytic transformations, such metallosilicates have exhibited unprecedented levels of performance for a variety of liquid-phase catalytic processes, including the conversion of biomass to chemicals, and sustainable oxidation technologies with H2O2. However, despite their unique levels of performance for these new types of chemical transformations, increased utilization of these promising materials is complicated by several factors. For example, their utilization in a liquid, and often polar, medium hinders process intensification (scale-up, catalyst deactivation). Moreover, such materials do not generally exhibit the active-site homogeneity of conventional aluminosilicates, and they typically possess a wide variety of active-site ensembles, only some of which may be directly involved in the catalytic chemistry of interest. Consequently, mechanistic understanding of these catalysts remains relatively low, and competitive reactions are commonly observed. Accordingly, unified approaches towards developing more active, selective and stable porous metallosilicates have not yet been achieved. Drawing on some of the most recent literature in the field, the purpose of this mini review is both to highlight the breakthroughs made with regard to the use of porous metallosilicates as heterogeneous catalysts for liquid-phase processing, and to highlight the pertaining challenges that we, and others, aim to overcome during the forthcoming years.

7.
Top Catal ; 61(3): 254-266, 2018.
Article in English | MEDLINE | ID: mdl-30956509

ABSTRACT

Safe and efficient hydrogen generation and storage has received much attention in recent years. Herein, a commercial 5 wt% Pd/C catalyst has been investigated for the catalytic, additive-free decomposition of formic acid at mild conditions, and the experimental parameters affecting the process systematically have been investigated and optimised. The 5 wt% Pd/C catalyst exhibited a remarkable 99.9% H2 selectivity and a high catalytic activity (TOF = 1136 h-1) at 30 °C toward the selective dehydrogenation of formic acid to H2 and CO2. The present commercial catalyst demonstrates to be a promising candidate for the efficient in-situ hydrogen generation at mild conditions possibiliting practical applications of formic acid systems on fuel cells. Finally DFT studies have been carried out to provide insights into the reactivity and decomposition of formic acid along with the two-reaction pathways on the Pd (111) surface.

8.
ChemSusChem ; 10(18): 3652-3659, 2017 09 22.
Article in English | MEDLINE | ID: mdl-28804968

ABSTRACT

The Baeyer-Villiger oxidation is a key transformation for sustainable chemical synthesis, especially when H2 O2 and solid materials are employed as oxidant and catalyst, respectively. 4-substituted cycloketones, which are readily available from renewables, present excellent platforms for Baeyer-Villiger upgrading. Such substrates exhibit substantially higher levels of activity and produce lactones at higher levels of lactone selectivity at all values of substrate conversion, relative to non-substituted cyclohexanone. For 4-isopropyl cyclohexanone, which is readily available from ß-pinene, continuous upgrading was evaluated in a plug-flow reactor. Excellent selectivity (85 % at 65 % conversion), stability, and productivity were observed over 56 h, with over 1000 turnovers (mol product per mol Sn) being achieved with no loss of activity. A maximum space-time yield that was almost twice that for non-substituted cyclohexanone was also obtained for this substrate [1173 vs. 607 g(product) kg(catalyst)-1 cm-3 h-1 ]. The lactone produced is also shown to be of suitable quality for ring opening polymerization. In addition to demonstrating the viability of the Sn-ß/H2 O2 system to produce renewable lactone monomers suitable for polymer applications, the substituted alkyl cyclohexanones studied also help to elucidate steric, electronic, and thermodynamic elements of this transformation in greater detail than previously achieved.


Subject(s)
Green Chemistry Technology , Hydrogen Peroxide/chemistry , Lactones/chemistry , Polymers/chemistry , Tin/chemistry , Catalysis , Oxidation-Reduction , Polymerization
9.
Chem Soc Rev ; 45(18): 4953-94, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27200435

ABSTRACT

Au-based catalysts have established a new important field of catalysis, revealing specific properties in terms of both high activity and selectivity for many reactions. However, the correlation between the morphology and the activity of the catalyst is not always clear although much effort has been addressed to this task. To some extent the problem relates to the complexity of the characterisation techniques that can be applied to Au catalyst and the broad range of ways in which they can be prepared. Indeed, in many reports only a few characterization techniques have been used to investigate the potential nature of the active sites. The aim of this review is to provide a critical description of the techniques that are most commonly used as well as the more advanced characterization techniques available for this task. The techniques that we discuss are (i) transmission electron microscopy methods, (ii) X-ray spectroscopy techniques, (iii) vibrational spectroscopy techniques and (iv) chemisorption methods. The description is coupled with developing an understanding of a number of preparation methods. In the final section the example of the supported AuPd alloy catalyst is discussed to show how the techniques can gain an understanding of an active oxidation catalyst.

10.
ChemCatChem ; 7(20): 3322-3331, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26583051

ABSTRACT

Lewis acidic zeolites are rapidly emerging liquid-phase Lewis acid catalysts. Nevertheless, their inefficient synthesis procedure currently prohibits greater utilization and exploitation of these promising materials. Herein, we demonstrate that SnIV-containing zeolite beta can readily be prepared both selectively and extremely rapidly by solid-state incorporation (SSI) method. Through a combination of spectroscopic (XRD, UV/Vis, X-ray absorption, magic-angle spinning NMR, and diffuse reflectance infrared Fourier transform spectroscopy) studies, we unambiguously demonstrate that site-isolated, isomorphously substituted SnIV sites dominate the Sn population up to a loading of 5 wt % Sn. These sites are identical to those found in conventionally prepared Sn-beta, and result in our SSI material exhibiting identical levels of intrinsic activity (that is, turnover frequency) despite the threefold increase in Sn loading, and the extremely rapid and benign nature of our preparation methodology. We also identify the presence of spectator sites, in the form of SnIV oligomers, at higher levels of Sn loading. The consequences of this mixed population with regards to catalysis (Meerwein-Pondorf-Verley reaction and glucose isomerization) are also identified.

11.
Acc Chem Res ; 48(5): 1403-12, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25884231

ABSTRACT

Glycerol is an important byproduct of biodiesel production, and it is produced in significant amounts by transesterification of triglycerides with methanol. Due to the highly functionalized nature of glycerol, it is an important biochemical that can be utilized as a platform chemical for the production of high-added-value products. At present, research groups in academia and industry are exploring potential direct processes for the synthesis of useful potential chemicals using catalytic processes. Over the last 10 years, there has been huge development of potential catalytic processes using glycerol as the platform chemical. One of the most common processes investigated so far is the catalytic oxidation of glycerol at mild conditions for the formation of valuable oxygenated compounds used in the chemical and pharmaceutical industry. The major challenges associated with the selective oxidation of glycerol are (i) the control of selectivity to the desired products, (ii) high activity and resistance to poisoning, and (iii) minimizing the usage of alkaline conditions. To address these challenges, the most common catalysts used for the oxidation of glycerol are based on supported metal nanoparticles. The first significant breakthrough was the successful utilization of supported gold nanoparticles for improving the selectivity to specific products, and the second was the utilization of supported bimetallic nanoparticles based on gold, palladium, and platinum for improving activity and controlling the selectivity to the desired products. Moreover, the utilization of base-free reaction conditions for the catalytic oxidation of glycerol has unlocked new pathways for the production of free-base products, which facilitates potential industrial application. The advantages of using gold-based catalysts are the improvement of the catalyst lifetime, stability, and reusability, which are key factors for potential commercialization. In this Account, we discuss the advantages of the using supported gold-based nanoparticles, preparation methods for achieving highly active gold-based catalysts, and parameters such as particle size, morphology of the bimetallic particle, and metal-support interactions, which can influence activity and selectivity to the desired products.

12.
Dalton Trans ; 43(11): 4514-9, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24407516

ABSTRACT

A two-step procedure for the post-synthetic preparation of Lewis acidic Sn-, Zr- and Ti-zeolite ß is reported. Dealumination of a commercially available Al-ß zeolite leads to the formation of highly siliceous material containing silanol nests, which can be filled in a second step via the solid-state ion-exchange or impregnation of an appropriate metal precursor. Spectroscopic studies indicate that each metal is subsequently coordinated within the zeolite framework, and that little or no bulk oxides are formed--despite the high metal loadings. The synthesised catalysts demonstrate excellent activity for the isomerisation of glyceraldehyde to dihydroxyacetone, a key model reaction for the upgrading of bio-renewable feedstocks, and the epoxidation of bulky olefins.

13.
Chemistry ; 19(39): 13193-8, 2013 Sep 23.
Article in English | MEDLINE | ID: mdl-23939827

ABSTRACT

The aerobic oxidation of amines offers a promising route towards many versatile chemical compounds. Within this contribution, we extend our previous investigations of iridium oxide-catalyzed alcohol oxidation to amine substrates. In addition to demonstrating the versatility of this catalyst, particular attention is focused on the mechanisms of the reaction. Herein, we demonstrate that although amines are oxidized slower than the corresponding alcohols, the catalyst has a preference for amine substrates, and oxidizes various amines at turnover frequencies greater than other systems found in the open literature. Furthermore, the competition between double amine dehydrogenation, to yield the corresponding nitrile, and amine-imine coupling, to yield the corresponding coupled imine, has been found to arise from a competitive reaction pathway, and stems from an effect of substrate-to-metal ratio. Finally, the mechanism responsible for the formation of N-benzylidene-1-phenylmethanamine was examined, and attributed to the coupling of free benzyl amine substrate and benzaldehyde, formed in situ through hydrolysis of the primary reaction product, benzyl imine.

14.
Chemistry ; 19(30): 9849-58, 2013 Jul 22.
Article in English | MEDLINE | ID: mdl-23780864

ABSTRACT

TiCl4 grafted to dehydrated silica is an industrially applied catalyst for the epoxidation of propylene. As with many heterogeneous catalysts, the precise nature of the surface species is not yet fully known, prohibiting reliable structure-activity correlations. In this study, the speciation and restructuring of site-isolated Ti(IV) Lewis acid centers was carefully investigated by using a variety of techniques. The initially formed ≡SiOTiCl3 species were found to restructure upon heating through the transfer of Cl ligands to the silica surface, eventually leading to tripodal (≡SiO)3 TiCl species. The superior activity and stability of such tripodal species is demonstrated for catalytic olefin epoxidation under continuous flow conditions.

15.
J Am Chem Soc ; 135(30): 11087-99, 2013 Jul 31.
Article in English | MEDLINE | ID: mdl-23802759

ABSTRACT

Iron and copper containing ZSM-5 catalysts are effective for the partial oxidation of ethane with hydrogen peroxide giving combined oxygenate selectivities and productivities of up to 95.2% and 65 mol kgcat(-1) h(-1), respectively. High conversion of ethane (ca. 56%) to acetic acid (ca. 70% selectivity) can be observed. Detailed studies of this catalytic system reveal a complex reaction network in which the oxidation of ethane gives a range of C2 oxygenates, with sequential C-C bond cleavage generating C1 products. We demonstrate that ethene is also formed and can be subsequently oxidized. Ethanol can be directly produced from ethane, and does not originate from the decomposition of its corresponding alkylperoxy species, ethyl hydroperoxide. In contrast to our previously proposed mechanism for methane oxidation over similar zeolite catalysts, the mechanism of ethane oxidation involves carbon-based radicals, which lead to the high conversions we observe.

16.
Dalton Trans ; 42(35): 12725-32, 2013 Sep 21.
Article in English | MEDLINE | ID: mdl-23752559

ABSTRACT

The volatile molecular precursors CrO2Cl2 and VOCl3 were grafted to thermally dehydrated silica in order to obtain site-isolated, monopodal ≡SiO-MO(x)Cl(y-1) species (M = V, Cr). Thermal restructuring under dynamic vacuum was investigated up to 450 °C with different spectroscopic techniques (viz., NMR, UV-Vis, IR, Raman and XPS). During this thermal restructuring, VOCl3 or CrO2Cl2 is partially eliminated from the surface, whilst the remaining surface species become multiply bound to the silica surface. This restructuring increases both the chemical and thermal stability of these materials, and has significant consequences for their performance as heterogeneous catalysts.

18.
Chemistry ; 18(49): 15735-45, 2012 Dec 03.
Article in English | MEDLINE | ID: mdl-23150452

ABSTRACT

The partial oxidation of methane to methanol presents one of the most challenging targets in catalysis. Although this is the focus of much research, until recently, approaches had proceeded at low catalytic rates (<10 h(-1)), not resulted in a closed catalytic cycle, or were unable to produce methanol with a reasonable selectivity. Recent research has demonstrated, however, that a system composed of an iron- and copper-containing zeolite is able to catalytically convert methane to methanol with turnover frequencies (TOFs) of over 14,000 h(-1) by using H(2)O(2) as terminal oxidant. However, the precise roles of the catalyst and the full mechanistic cycle remain unclear. We hereby report a systematic study of the kinetic parameters and mechanistic features of the process, and present a reaction network consisting of the activation of methane, the formation of an activated hydroperoxy species, and the by-production of hydroxyl radicals. The catalytic system in question results in a low-energy methane activation route, and allows selective C(1)-oxidation to proceed under intrinsically mild reaction conditions.

20.
ChemSusChem ; 5(9): 1668-86, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22848012

ABSTRACT

The economically viable oxidative upgrading of methane presents one of the most difficult but rewarding challenges within catalysis research. Its potential to revolutionalise the chemical value chain, coupled with the associated supremely challenging scientific aspects, has ensured this topic's high popularity over the preceeding decades. Herein, we report a non-exhaustive account of the current developments within the field of oxidative methane upgrading and summarise the pertaining challenges that have yet to be solved.


Subject(s)
Methane/chemistry , Alkenes/chemistry , Carbon Monoxide/chemistry , Catalysis , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...