Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
1.
Zookeys ; 1200: 75-144, 2024.
Article in English | MEDLINE | ID: mdl-38751965

ABSTRACT

The Elateridae, or click beetles are abundant and diverse in most terrestrial ecosystems in North America, acting as plant pests and filling many other ecological roles. The 112 genera of Elateridae Leach, 1815, or click beetles, known from Canada and USA are included in a first comprehensive digital interactive key to adults. A link to an online peer-reviewed LUCID key to elaterid genera and downloadable LUCID files are provided. Diagnostic morphological summaries using information from the 61 characters and 158 character states of the matrix key are presented for all genera. A table summarizes current understanding of habitat use by all elaterid genera in Canada and USA from literature, collections, citizen science, and our own observations. Diversity of elaterid genera was high throughout warm and cool temperate regions, especially in mountainous areas and mesic woodlands. Larvae of most genera were associated with soil, litter and decaying wood.

2.
Hum Gene Ther ; 34(15-16): 732-741, 2023 08.
Article in English | MEDLINE | ID: mdl-37433214

ABSTRACT

The study was designed to determine whether urocortin 2 (Ucn2) gene transfer is as safe and effective as metformin in insulin-resistant mice. Four groups of insulin-resistant db/db mice and a nondiabetic group were studied: (1) metformin; (2) Ucn2 gene transfer; (3) metformin + Ucn2 gene transfer; (4) saline; and (5) nondiabetic mice. After completion of the 15-week protocol, glucose disposal was quantified, safety assessed, and gene expression documented. Ucn2 gene transfer was superior to metformin, providing reductions in fasting glucose and glycated hemoglobin and enhanced glucose tolerance. The combination of metformin + Ucn2 gene transfer provided no better glucose control than Ucn2 gene transfer alone and was not associated with hypoglycemia. Metformin alone, Ucn2 gene transfer alone, and metformin + Ucn2 gene transfer together reduced fatty infiltration of the liver. Serum alanine transaminase concentration was elevated in all db/db groups (vs. nondiabetic controls), but the metformin + Ucn2 gene transfer combined group had the lowest alanine transaminase levels. No group differences in fibrosis were detected. In a hepatoma cell line, activation of AMP kinase showed a rank order of combined metformin + Ucn2 peptide > Ucn2 peptide > metformin. We conclude (1) The combination of metformin + Ucn2 gene transfer does not result in hypoglycemia. (2) Ucn2 gene transfer alone provides superior glucose disposal versus metformin alone. (3) The combination of Ucn2 gene transfer and metformin is safe and has additive effects in reducing serum alanine transaminase concentration, activating AMP kinase activity, and increasing Ucn2 expression, but is no more efficacious than Ucn2 gene transfer alone in reducing hyperglycemia. These data indicate that Ucn2 gene transfer is more effective than metformin in the db/db model of insulin resistance and combined treatment with metformin + Ucn2 gene transfer appears to have favorable effects on liver function and Ucn2 expression.


Subject(s)
Hypoglycemia , Metformin , Mice , Animals , Glucose/metabolism , Insulin/genetics , Metformin/pharmacology , Urocortins/genetics , Urocortins/pharmacology , Adenylate Kinase , Alanine Transaminase
3.
Sci Rep ; 13(1): 7075, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37127773

ABSTRACT

Adenylyl cyclase 6 (AC6) synthesizes second messenger cAMP in G protein-coupled receptor (GPCR) signaling. In cochlear hair cells, AC6 distribution relies on an adhesion GPCR, ADGRV1, which is associated with Usher syndrome (USH), a condition of combined hearing and vision loss. ADGRV1 is a component of the USH type 2 (USH2) protein complex in hair cells and photoreceptors. However, the role of AC6 in the inner ear and retina has not been explored. Here, we found that AC6 distribution in hair cells depends on the USH2 protein complex integrity. Several known AC6 regulators and effectors, which were previously reported to participate in ADGRV1 signaling in vitro, are localized to the stereociliary compartments that overlap with AC6 distribution in hair cells. In young AC6 knockout (Adcy6-/-) mice, the activity of cAMP-dependent protein kinase, but not Akt kinase, is altered in cochleas, while both kinases are normal in vestibular organs. Adult Adcy6-/- mice however exhibit normal hearing function. AC6 is expressed in mouse retinas but rarely in photoreceptors. Adcy6-/- mice have slightly enhanced photopic but normal scotopic vision. Therefore, AC6 may participate in the ADGRV1 signaling in hair cells but AC6 is not essential for cochlear and retinal development and maintenance.


Subject(s)
Retina , Usher Syndromes , Mice , Animals , Retina/metabolism , Adenylyl Cyclases/metabolism , Hair Cells, Auditory/metabolism
4.
PLoS One ; 18(2): e0281550, 2023.
Article in English | MEDLINE | ID: mdl-36780477

ABSTRACT

Role of blood-based factors in development and progression of heart failure (HF) is poorly characterized. Blood contains factors released during pathophysiological states that may impact cellular function and provide mechanistic insights to HF management. We tested effects of blood from two distinct HF models on cardiac metabolism and identified possible cellular targets of the effects. Blood plasma was obtained from daunorubicin- and myocardial infarction-induced HF rabbits (Dauno-HF and MI-HF) and their controls (Dauno-Control and MI-Control). Effects of plasma on bioenergetics of myocardial tissue from healthy mice and cellular cardiac components were assessed using high-resolution respirometry and Seahorse flux analyzer. Since endothelial cell respiration was profoundly affected by HF plasma, effects of plasma on endothelial cell barrier function and death were further evaluated. Western-blotting and electron microscopy were performed to evaluate mitochondrial proteins and morphology. Brief exposure to HF plasma decreased cardiac tissue respiration. Endothelial cell respiration was most impacted by exposure to HF plasma. Endothelial cell monolayer integrity was decreased by incubation with Dauno-HF plasma. Apoptosis and necrosis were increased in cells incubated with Dauno-HF plasma for 24 h. Down-regulation of voltage-dependent anion-selective channel (VDAC)-1, translocase of outer membrane 20 (Tom20), and mitochondrial fission factor (MFF) in cells exposed to Dauno-HF plasma and mitochondrial signal transducer and activator of transcription 3 (Stat3) and MFF in cells exposed to MI-HF plasma were observed. Mitochondrial structure was disrupted in cells exposed to HF plasma. These findings indicate that endothelial cells and mitochondrial structure and function may be primary target where HF pathology manifests and accelerates. High-throughput blood-based screening of HF may provide innovative ways to advance disease diagnosis and management.


Subject(s)
Endothelial Cells , Heart Failure , Mice , Animals , Rabbits , Endothelial Cells/metabolism , Mitochondria, Heart/metabolism , Myocardium/metabolism , Energy Metabolism
5.
Hum Gene Ther ; 33(19-20): 1091-1100, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36053712

ABSTRACT

We used transverse aortic constriction (TAC) in mice to test the hypothesis that urocortin 2 (Ucn2) gene transfer would increase left ventricular (LV) systolic and diastolic function in the pressure-stressed LV. Three groups were studied: (1) control mice (no TAC); (2) mice that received saline 6 weeks after TAC; and (3) mice that received Ucn2 gene transfer 6 weeks after TAC, using adeno-associated virus 8 encoding murine Ucn2 (AAV8.mUcn2; 2 × 1013 genome copies (gc)/kg, i.v. per mouse). Echocardiography was performed 6 and 12 weeks after TAC. In terminal studies 12 weeks after TAC, rates of LV pressure development and decay and Tau were measured, and LV cardiac myocytes (CMs) were isolated and cytosolic Ca2+ transients and sarcomere shortening rates recorded. Reverse transcription polymerase chain reaction and immunoblotting were used to measure key proteins in LV samples. A CM cell line (HL-1) was used to explore mechanisms. Concentric LV hypertrophy was evident on echocardiography 6 weeks after TAC. Twelve weeks after TAC, LV ejection fraction (EF) was higher in mice that received Ucn2 gene transfer (TAC-saline: 65% ± 3%; TAC-Ucn2: 75% ± 2%; p = 0.01), as was LV peak +dP/dt (1.9-fold increase; p = 0.001) and LV peak -dP/dt (1.7-fold increase; p = 0.017). Tau was more rapid (23% reduction, p = 0.02), indicating improved diastolic function. The peak rates of sarcomere shortening (p = 0.002) and lengthening (p = 0.002) were higher in CMs from TAC-Ucn2 mice, and Tau was reduced (p = 0.001). LV (Ser-16) phosphorylation of phospholamban (PLB) was increased in TAC-Ucn2 mice (p = 0.025), and also was increased in HL-1 cells treated with angiotensin II to induce hypertrophy and incubated with Ucn2 peptide (p = 0.001). Ucn2 gene transfer in TAC-induced heart failure with preserved ejection fraction increased cardiac function in the intact LV and provided corresponding benefits in CMs isolated from study animals, including increased myofilament Ca2+ sensitivity during contraction. The mechanism includes enhanced CM Ca2+ handling associated with increased (Ser-16)-PLB.


Subject(s)
Angiotensin II , Urocortins , Mice , Animals , Urocortins/genetics , Urocortins/metabolism , Ventricular Pressure , Genetic Therapy , Ventricular Function, Left/genetics , Hypertrophy , Mice, Inbred C57BL
6.
J Vet Cardiol ; 37: 18-25, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34509087

ABSTRACT

A 2.5-year-old intact female Marans domestic chicken was presented for lethargy, open beak breathing, and hyporexia. Echocardiography noted left atrial and left ventricular enlargement and computed tomography angiography revealed a type III left-sided patent ductus arteriosus. Retrograde catheterization of the ductus was performed via percutaneous access of the right external jugular vein, and transvenous ductal occlusion was achieved using an 8-mm Amplatzer™ Vascular Plug 4. Transient bradycardia and hypotension occurred during right heart catheterization, which were successfully treated with atropine and epinephrine. A two-week follow-up postoperative cardiac computed tomography scan confirmed appropriate placement of the occluder within the ductus, and echocardiography demonstrated reduced left heart size. The chicken showed an improvement in clinical signs and remains apparently well six months after the intervention. This report describes the computed tomographic findings of a patent ductus arteriosus in an avian species, minimally invasive transvenous closure of this congenital anomaly with a low-profile occlusion device, and the associated challenges and considerations specific to cardiac intervention in an avian patient.


Subject(s)
Ductus Arteriosus, Patent , Angiography , Animals , Cardiac Catheterization/veterinary , Chickens , Ductus Arteriosus, Patent/diagnostic imaging , Ductus Arteriosus, Patent/surgery , Ductus Arteriosus, Patent/veterinary , Echocardiography/veterinary , Female , Treatment Outcome
7.
Zookeys ; 1044: 951-991, 2021.
Article in English | MEDLINE | ID: mdl-34183898

ABSTRACT

Epigaeic beetle assemblages were surveyed using continuous pitfall trapping during the summers of 1992 and 1993 in six widely geographically distributed locations in Alberta's aspen-mixedwood forests prior to initial forest harvest. Species composition and turnover (ß-diversity) were evaluated on several spatial scales ranging from Natural Regions (distance between samples 120-420 km) to pitfall traps (40-60 m). A total of 19,885 ground beetles (Carabidae) representing 40 species and 12,669 rove beetles (non-AleocharinaeStaphylinidae) representing 78 species was collected. Beetle catch, species richness, and diversity differed significantly among the six locations, as did the identity of dominant species. Beetle species composition differed significantly between the Boreal Forest and Foothills Natural Regions for both taxa. Staphylinidae ß-diversity differed significantly between Natural Regions, whereas Carabidae ß-diversity differed among locations. Climate variables such as number of frost-free days, dry periods, and mean summer temperatures were identified as significant factors influencing beetle assemblages at coarse spatial scales, whereas over- and understory vegetation cover, litter depth, shade, slope, and stand age influenced beetle assemblages at finer spatial scales. Significant interannual variation in assemblage structure was noted for both taxa. Because composition of epigaeic beetle assemblages differed across spatial scales, forest management strategies based only on generalized understanding of a single location will be ineffective as conservation measures. In addition, site history and geographic variation significantly affect species distributions of these two beetle families across the landscape. Thus, we underscore Terry Erwin's suggestion that biodiversity assessments focused on species assemblages at different spatial scales provide a sound approach for understanding biodiversity change and enhancing conservation of arthropod biodiversity.

8.
Mol Ther Methods Clin Dev ; 17: 220-233, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-31970200

ABSTRACT

Type 1 diabetes affects 20 million patients worldwide. Insulin is the primary and commonly the sole therapy for type 1 diabetes. However, only a minority of patients attain the targeted glucose control and reduced adverse events. We tested urocortin 2 gene transfer as single-agent therapy for insulin deficiency using two mouse models. Urocortin 2 gene transfer reduced blood glucose for months after a single intravenous injection, through increased skeletal muscle insulin sensitivity, increased insulin release in response to glucose stimulation, and increased plasma insulin levels before and during euglycemic clamp. The combined increases in both insulin availability and sensitivity resulted in improved glycemic indices-events that were not anticipated in these insulin-deficient models. In addition, urocortin 2 gene transfer reduced ocular manifestations of long-standing insulin deficiency such as vascular leak and improved retinal function. Finally, mortality was reduced by urocortin 2 gene transfer. The mechanisms for these beneficial effects included increased activities of AMP-activated protein kinase and Akt (protein kinase B) in skeletal muscle, increased skeletal muscle glucose uptake, and increased insulin release. These data suggest that urocortin 2 gene transfer may be a viable therapy for new onset type 1 diabetes and might reduce insulin needs in later stage disease.

9.
Mol Ther ; 28(1): 180-188, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31676153

ABSTRACT

Prevalence of left ventricular (LV) systolic and diastolic dysfunction increases with aging. We previously reported that urocortin 2 (Ucn2) gene transfer increases heart function in mice with heart failure with reduced ejection fraction. Here, we test the hypotheses that (1) Ucn2 gene transfer will increase LV function in aged mice and that (2) Ucn2 gene transfer given in early life will prevent age-related LV dysfunction. Nineteen-month-old (treatment study) and 3-month-old (prevention study) mice received Ucn2 gene transfer or saline. LV function was examined 3-4 months (treatment study) or 20 months (prevention study) after Ucn2 gene transfer or saline injection. In both the treatment and prevention strategies, Ucn2 gene transfer increased ejection fraction, reduced LV volume, increased LV peak -dP/dt and peak +dP/dt, and reduced global longitudinal strain. Ucn2 gene transfer-in both treatment and prevention strategies-was associated with higher levels of LV SERCA2a protein, reduced phosphorylation of LV CaMKIIa, and reduced LV α-skeletal actin mRNA expression (reflecting reduced cardiac stress). In conclusion, Ucn2 gene transfer restores normal cardiac function in mice with age-related LV dysfunction and prevents development of LV dysfunction.


Subject(s)
Aging , Corticotropin-Releasing Hormone/genetics , Gene Transfer Techniques , Genetic Therapy/methods , Urocortins/genetics , Ventricular Dysfunction, Left/prevention & control , Ventricular Dysfunction, Left/therapy , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Corticotropin-Releasing Hormone/blood , Female , Genetic Vectors/administration & dosage , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Stroke Volume , Urocortins/blood , Ventricular Function, Left/genetics
10.
PLoS One ; 14(12): e0224428, 2019.
Article in English | MEDLINE | ID: mdl-31790421

ABSTRACT

INTRODUCTION: Urocortin 2 (Ucn2) is a 38-amino acid peptide of the corticotropin-releasing factor family. Intravenous (IV) delivery of an adeno-associated virus vector serotype 8 encoding Ucn2 (AAV8.Ucn2) increases insulin sensitivity and glucose disposal in mice with insulin resistance. OBJECTIVE: To determine the effects of Ucn2 on liver metabolome. METHODS: Six-week-old C57BL6 mice were divided into normal chow (CHOW)-fed and high fat diet (HFD)-fed groups. The animals received saline, AAV8 encoding no gene (AAV8.Empt) or AAV8.Ucn2 (2x1013 genome copy/kg, IV injection). Livers were isolated from CHOW-fed and HFD-fed mice and analyzed by untargeted metabolomics. Group differences were statistically analyzed. RESULTS: In CHOW-fed mice, AAV8.Ucn2 gene transfer (vs. saline) altered the metabolites in glycolysis, pentose phosphate, glycogen synthesis, glycogenolysis, and choline-folate-methionine signaling pathways. In addition, AAV8.Ucn2 gene transfer increased amino acids and peptides, which were associated with reduced protein synthesis. In insulin resistant (HFD-induced) mice, HFD (vs CHOW) altered 448 (112 increased and 336 decreased) metabolites and AAV8.Ucn2 altered 239 metabolites (124 increased and 115 reduced) in multiple pathways. There are 61 metabolites in 5 super pathways showed interactions between diet and AAV8.Ucn2 treatment. Among them, AAV8.Ucn2 gene transfer reversed HFD effects on 13 metabolites. Finally, plasma Ucn2 effects were determined using a 3-group comparison of HFD-fed mice that received AAV8.Ucn2, AAV.Empt or saline, where 18 metabolites that altered by HFD (15 increased and 3 decreased), but restored levels to that seen in CHOW-fed mice by increased plasma Ucn2. CONCLUSIONS: Metabolomics study revealed that AAV8.Ucn2 gene transfer, through increased plasma Ucn2, provided counter-HFD effects in restoring hepatic metabolites to normal levels, which could be the underlying mechanisms for Ucn2 effects on increasing glucose disposal and reducing insulin assistance.


Subject(s)
Dependovirus/genetics , Gene Transfer Techniques , Insulin Resistance/genetics , Liver/metabolism , Urocortins/genetics , Animals , Genetic Vectors/genetics , Glucose/metabolism , Homeostasis/genetics , Male , Mice , Mice, Inbred C57BL
11.
PLoS One ; 14(6): e0218110, 2019.
Article in English | MEDLINE | ID: mdl-31173603

ABSTRACT

PURPOSE: We previously reported that inhibitory G protein (Gi) exerts intrinsic receptor-independent inhibitory activity upon adenylyl cyclase (AC) that regulates contractile force in rat ventricle. The two major subtypes of AC in the heart are AC5 and AC6. The aim of this study was to determine if this intrinsic Gi inhibition regulating contractile force is AC subtype selective. METHODS: Wild-type (WT), AC5 knockout (AC5KO) and AC6 knockout (AC6KO) mice were injected with pertussis toxin (PTX) to inactivate Gi or saline (control).Three days after injection, we evaluated the effect of simultaneous inhibition of phosphodiesterases (PDE) 3 and 4 with cilostamide and rolipram respectively upon in vivo and ex vivo left ventricular (LV) contractile function. Also, changes in the level of cAMP were measured in left ventricular homogenates and at the membrane surface in cardiomyocytes obtained from the same mouse strains expressing the cAMP sensor pmEPAC1 using fluorescence resonance energy transfer (FRET). RESULTS: Simultaneous PDE3 and PDE4 inhibition increased in vivo and ex vivo rate of LV contractility only in PTX-treated WT and AC5KO mice but not in saline-treated controls. Likewise, Simultaneous PDE3 and PDE4 inhibition elevated total cAMP levels in PTX-treated WT and AC5KO mice compared to saline-treated controls. In contrast, simultaneous PDE3 and PDE4 inhibition did not increase in vivo or ex vivo rate of LV contractility or cAMP levels in PTX-treated AC6KO mice compared to saline-treated controls. Using FRET analysis, an increase of cAMP level was detected at the membrane of cardiomyocytes after simultaneous PDE3 and PDE4 inhibition in WT and AC5KO but not AC6KO. These FRET data are consistent with the functional data indicating that AC6 activity and PTX inhibition of Gi is necessary for simultaneous inhibition of PDE3 and PDE4 to elicit an increase in contractility. CONCLUSIONS: Together, these data suggest that AC6 is tightly regulated by intrinsic receptor-independent Gi activity, thus providing a mechanism for maintaining low basal cAMP levels in the functional compartment that regulates contractility.


Subject(s)
Adenylyl Cyclases/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Myocardial Contraction , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Cyclic AMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Female , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Myocardial Contraction/drug effects , Myocardium/metabolism , Pertussis Toxin/pharmacology
12.
Life Sci ; 221: 212-223, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30731143

ABSTRACT

AIMS: To determine the metabolic adaptations to compensated heart failure using a reproducible model of myocardial infarction and an unbiased metabolic screen. To address the limitations in sample availability and model variability observed in preclinical and clinical metabolic investigations of heart failure. MAIN METHODS: Metabolomic analysis was performed on serum and myocardial tissue from rabbits after myocardial infarction (MI) was induced by cryo-injury of the left ventricular free wall. Rabbits followed for 12 weeks after MI exhibited left ventricular dilation and depressed systolic function as determined by echocardiography. Serum and tissue from the viable left ventricular free wall, interventricular septum and right ventricle were analyzed using a gas chromatography time of flight mass spectrometry-based untargeted metabolomics assay for primary metabolites. KEY FINDINGS: Unique results included: a two- three-fold increase in taurine levels in all three ventricular regions of MI rabbits and similarly, the three regions had increased inosine levels compared to sham controls. Reduced myocardial levels of myo-inositol in the myocardium of MI animals point to altered phospholipid metabolism and membrane receptor function in heart failure. Metabolite profiles also provide evidence for responses to oxidative stress and an impairment in TCA cycle energy production in the failing heart. SIGNIFICANCE: Our results revealed metabolic changes during compensated cardiac dysfunction and suggest potential targets for altering the progression of heart failure.


Subject(s)
Heart Failure/metabolism , Myocardial Infarction/metabolism , Myocardium/metabolism , Animals , Echocardiography , Female , Heart Ventricles/metabolism , Inosine/analysis , Inosine/blood , Inositol/analysis , Male , Metabolomics/methods , Myocardium/cytology , Oxidative Stress/physiology , Rabbits , Systole/physiology , Taurine/analysis , Taurine/blood , Ventricular Function, Left/physiology , Ventricular Remodeling/physiology
13.
Hum Gene Ther ; 30(6): 682-692, 2019 06.
Article in English | MEDLINE | ID: mdl-30638074

ABSTRACT

A fusion protein (C1C2) constructed by fusing the intracellular C1 and C2 segments of adenylyl cyclase type 6 (AC6) retains beneficial effects of AC6 expression, without increasing cyclic adenosine monophosphate generation. The effects of cardiac-directed C1C2 expression in pressure overload is unknown. Left ventricular (LV) pressure overload was induced by transverse aortic constriction (TAC) in C1C2 mice and in transgene negative (TG-) mice. Four weeks after TAC, LV systolic function and diastolic function were measured, and Ca2+ handling was assessed. Four weeks after TAC, TG- animals showed reduced LV peak +dP/dt. LV peak +dP/dt in C1C2 mice was statistically indistinguishable from that of normal mice and was higher than that seen in TG- mice 4 weeks after TAC (p = 0.02), despite similar and substantial cardiac hypertrophy. In addition to higher LV peak +dP/dt in vivo, cardiac myocytes from C1C2 mice showed shorter time-to-peak Ca2+ transient amplitude (p = 0.002) and a reduced time constant of cytosolic Ca2+ decline (Tau; p = 0.003). Sarcomere shortening fraction (p < 0.03) and the rate of sarcomere shortening (p < 0.02) increased in C1C2 cardiac myocytes. Myofilament sensitivity to Ca2+ was increased in systole (p = 0.02) and diastole (p = 0.04) in C1C2 myocytes. These findings indicate enhanced Ca2+ handling associated with C1C2 expression. Favorable effects on Ca2+ handling and LV function were associated with increased LV SERCA2a protein content (p = 0.015) and reduced LV fibrosis (p = 0.008). Cardiac-directed C1C2 expression improves Ca2+ handling and increases LV contractile function in pressure overload. These data provide a rationale for further exploration of C1C2 gene transfer as a potential treatment for heart failure.


Subject(s)
Adenylyl Cyclases/genetics , Catalytic Domain/genetics , Gene Expression , Heart Failure/genetics , Heart Failure/physiopathology , Myocytes, Cardiac/metabolism , Protein Interaction Domains and Motifs/genetics , Adenylyl Cyclases/chemistry , Animals , Calcium/metabolism , Echocardiography , Female , Fibrosis , Heart Failure/diagnosis , Heart Function Tests , Male , Mice , Mice, Transgenic , Sarcomeres
14.
Hum Gene Ther ; 30(6): 693-701, 2019 06.
Article in English | MEDLINE | ID: mdl-30648430

ABSTRACT

Diabetes mellitus is associated with increased risk of heart failure. It has been previously demonstrated in mice that a single injection of adeno-associated virus 8 encoding urocortin 2 (AAV8.UCn2) increases glucose disposal in models of insulin resistance and improves the function of the failing heart. The present study tested the hypothesis that UCn2 gene transfer would reduce diabetes-related left ventricular (LV) dysfunction. Eight-week-old C57BL6 male mice were fed a Western diet (WD; 45% fat, 35% carbohydrate) for 40 weeks. At week 30, they received saline or AAV8.UCn2 (2 × 1013 genome copies/kg) via intravenous injection. Ten weeks after gene transfer, fasting blood glucose, glucose tolerance, and cardiac function were measured via echocardiography and in vivo measurement of LV contractile function, and the results were compared to those of mice fed normal chow (NC; 10% fat; 70% carbohydrate). The contents of key LV signaling proteins were also measured to probe mechanisms. WD increased 12 h fasting glucose (WD: 190 ± 11 mg/dL, n = 8; NC: 105 ± 12 mg/dL, n = 7; p = 0.0004). WD tended to reduce LV peak +dP/dt (p = 0.08) and LV peak -dP/dt (p = 0.05). LV ejection fraction was unchanged. Among WD-fed mice, UCn2 gene transfer reduced 12 h fasting glucose (WD-UCn2: 149 ± 6 mg/dL, n = 8; WD-Saline: 190 ± 11 mg/dL, n = 8; p = 0.012), increased LV peak +dP/dt (p < 0.001) and LV peak -dP/dt (p = 0.013), and reduced Tau (p < 0.02), indicating beneficial effects on systolic and diastolic LV function. In addition, among WD-fed mice, UCn2 gene transfer increased LV ejection fraction (p < 0.005) and the velocity of circumferential fiber shortening (p = 0.0005). Finally, a reduction was seen in fatty infiltration of the liver in WD-fed mice that had received UCn2 gene transfer. LV samples from WD-UCn2 mice showed increased phosphorylation of the protein kinase A catalytic domain (p = 0.03). In conclusion, UCn2 gene transfer increased LV systolic and diastolic function and reduced blood glucose in mice with diabetes-related LV dysfunction, indicating that UCn2 gene transfer may be of potential therapeutic benefit.


Subject(s)
Corticotropin-Releasing Hormone/genetics , Diet, Western , Heart Failure/genetics , Myocardium/metabolism , Transduction, Genetic , Urocortins/genetics , Ventricular Function, Left/genetics , Animals , Corticotropin-Releasing Hormone/metabolism , Dependovirus/genetics , Echocardiography , Gene Transfer Techniques , Glucose , Heart Failure/diagnosis , Heart Failure/metabolism , Heart Failure/physiopathology , Homeostasis , Mice , Mice, Transgenic , Signal Transduction , Urocortins/metabolism
15.
Hum Gene Ther ; 30(1): 10-20, 2019 01.
Article in English | MEDLINE | ID: mdl-30003813

ABSTRACT

Peptide infusions of peptides the corticotropin releasing factor family, including urocortin 2, stresscopin, and urocortin 3 (UCn3), have favorable acute effects in clinical heart failure (HF), but their short half-lives make them unsuitable for chronic therapy. This study asked whether UCn3 gene transfer, which provides sustained elevation of plasma UCn3 levels, increases the function of the failing heart. HF was induced by transmural left ventricular (LV) cryoinjury in mice. LV function was assessed 3 weeks later by echocardiography. Those with ejection fractions (EF) <40% received intravenous saline or intravenous adeno-associated virus type-8 encoding murine UCn3 (AAV8.mUCn3; 1.9 × 1013 genome copies/kg). Five weeks after randomization, repeat echocardiography, assessment of LV function (+dP/dt, -dP/dt), and quantification of Ca2+ transients and sarcomere shortening in isolated cardiac myocytes were conducted, and assessment of LV Ca2+ handling and stress proteins was performed. Three weeks after myocardial infarction, prior to treatment, EFs were reduced (mean 31%, from 63% in sham-operated animals). Mice randomized to receive UCn3 gene transfer showed increased plasma UCn3 (from 0.1 ± 0.01 ng/mL in the saline group to 5.6 ± 1.1 ng/mL; n = 12 each group; p < 0.0001). Compared to mice that received saline, UCn3 gene transfer was associated with higher values for EF (p = 0.0006); LV +dP/dt (p < 0.0001), and LV -dP/dt (p < 0.0001). Cardiac myocytes from mice that received UCn3 gene transfer showed higher peak Ca2+ transients (p = 0.0005), lower time constant of cytosolic Ca2+ decline (tau, p < 0.0001), and higher rates of sarcomere shortening (+dL/dt, p = 0.03) and lengthening (-dL/dt, p = 0.04). LV samples from mice that received UCn3 gene transfer contained higher levels of SERCA2a (p = 0.0004 vs. HF) and increased amounts of phosphorylated troponin I (p = 0.04 vs. HF). UCn3 gene transfer is associated with improved Ca2+ handling and LV function in mice with HF and reduced EF.


Subject(s)
Gene Expression , Gene Transfer Techniques , Genetic Therapy , Heart Failure/genetics , Heart Failure/therapy , Transgenes , Urocortins/genetics , Animals , Apoptosis , Biomarkers , Calcium/metabolism , Dependovirus/genetics , Disease Models, Animal , Echocardiography , Female , Fibrosis , Gene Order , Genetic Vectors/genetics , Heart Failure/diagnosis , Male , Mice , Myocytes, Cardiac/metabolism , Transduction, Genetic , Ventricular Function, Left/genetics
16.
JACC Basic Transl Sci ; 3(2): 249-264, 2018 Apr.
Article in English | MEDLINE | ID: mdl-30062211

ABSTRACT

UCn2 and UCn3 peptides have recently been infused to treat patients with heart failure (HF) but are limited by their short half-lives. A 1-time intravenous injection of virus vectors encoding UCn2 or UCn3 provided sustained increases in plasma concentrations of the peptides. This was associated with increases in both systolic and diastolic left ventricular (LV) function, mediated by increased LV SERCA2a expression and Ca2+ handling. UCn2, but not UCn3, gene transfer reduced fasting glucose and increased glucose disposal. These findings support UCn2 and UCn3 gene transfer as potential treatments for HF and indicate that UCn2 may be an optimal selection in patients with diabetes and HF.

17.
Am Heart J ; 201: 111-116, 2018 07.
Article in English | MEDLINE | ID: mdl-29763816

ABSTRACT

The prognosis of patients with HFrEF remains poor despite the use of current medical and device therapies. Preclinical studies of HFrEF using IC delivery of RT-100, a replication deficient, E1/E3-deleted human adenovirus 5 encoding human AC6 was associated with favorable effects on LV function and remodeling. A recent multicenter, double-blind, placebo-controlled, phase 2 study demonstrated the safety of IC delivery of RT-100 in HFrEF patients and potential efficacy at the higher doses. This phase 2 dose finding study, which included doses not expected to be effective, identified a potential reduction in congestive heart failure admissions in the AC6-treated group one year after randomization. The FLOURISH study is designed to investigate the prospect of reduction of heart failure hospitalization and other clinical adverse events and improvement in EF. The FLOURISH study is a double-blind, placebo-controlled, multicenter Phase 3 clinical trial that will randomize 536 patients to a one-time IC administration of RT-100 (1012 vp) or placebo in a 1:1 ratio. Subjects will be 18-80 years of age, on optimal standard of care HF therapy with LVEF ≥10% and ≤35% by echocardiogram, and will undergo IC administration of RT-100 vs. placebo on Day 1. Follow-up study visits will be performed at Weeks 1 and 4, and Months 3, 6, and 12. Patients will be followed for an additional 36 months for safety assessments with telephone contact at Months 24, 36, and 48. The primary objective is to determine the efficacy of IC RT-100 vs. placebo in reducing the event rate of all (first and repeat) HF hospitalizations occurring from baseline to 12 months. The secondary objectives are to determine the efficacy of IC RT-100 on CV death, all cause death, and all HF events and in improving NYHA functional classification. Exploratory endpoints will include echocardiographic parameters of left ventricular systolic and diastolic function, HF symptoms and physical limitations, 6-minute walking distance, Borg dyspnea score, and NT-proBNP levels. The FLOURISH study, which received fast track designation from the Food and Drug Administration in December 2017, will further investigate the role of a one-time intracoronary injection of RT-100 in reducing HF hospitalizations and will serve as a registration trial (potentially pivotal investigation) for RT-100 as a treatment for HFrEF.


Subject(s)
Adenylyl Cyclases/administration & dosage , Clinical Trials, Phase III as Topic/methods , Gene Transfer Techniques , Genetic Therapy/methods , Heart Failure/therapy , Randomized Controlled Trials as Topic/methods , Stroke Volume/physiology , Adenoviruses, Human , Coronary Vessels , Heart Failure/physiopathology , Humans , Injections, Intra-Arterial , Ventricular Function, Left/physiology
18.
PLoS One ; 12(8): e0181282, 2017.
Article in English | MEDLINE | ID: mdl-28767701

ABSTRACT

OBJECTIVES: Increased expression of adenylyl cyclase type 6 (AC6) has beneficial effects on the heart through cyclic adenosine monophosphate (cAMP)-dependent and cAMP-independent pathways. We previously generated a catalytically inactive mutant of AC6 (AC6mut) that has an attenuated response to ß-adrenergic receptor stimulation, and, consequently, exhibits reduced myocardial cAMP generation. In the current study we test the hypothesis that cardiac-directed expression of AC6mut would protect the heart from sustained ß-adrenergic receptor stimulation, a condition frequently encountered in patients with heart failure. METHODS AND RESULTS: AC6mut mice and transgene negative siblings received osmotic mini-pumps to provide continuous isoproterenol infusion for seven days. Isoproterenol infusion caused deleterious effects that were attenuated by cardiac-directed AC6mut expression. Both groups showed reduced left ventricular (LV) ejection fraction, but the reduction was less in AC6mut mice (p = 0.047). In addition, AC6mut mice showed superior left ventricular function, manifested by higher values for LV peak +dP/dt (p = 0.03), LV peak -dP/dt (p = 0.008), end-systolic pressure-volume relationship (p = 0.003) and cardiac output (p<0.03). LV samples of AC6mut mice had more sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) protein (p<0.01), which likely contributed to better LV function. AC6mut mice had lower rates of cardiac myocyte apoptosis (p = 0.016), reduced caspase 3/7 activity (p = 0.012) and increased B-cell lymphoma 2 (Bcl2) expression (p = 0.0001). CONCLUSION: Mice with cardiac-directed AC6mut expression weathered the deleterious effects of continuous isoproterenol infusion better than control mice, indicating cardiac protection.


Subject(s)
Adenylyl Cyclases/genetics , Adrenergic beta-Agonists/administration & dosage , Isoproterenol/administration & dosage , Mutation , Myocytes, Cardiac/cytology , Ventricular Function, Left/drug effects , Adenylyl Cyclases/metabolism , Adrenergic beta-Agonists/pharmacology , Animals , Apoptosis , Caspases/genetics , Caspases/metabolism , Gene Expression Regulation/drug effects , Isoproterenol/pharmacology , Male , Mice , Mice, Transgenic , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Stroke Volume/drug effects
19.
PLoS One ; 12(5): e0177660, 2017.
Article in English | MEDLINE | ID: mdl-28498861

ABSTRACT

Anthracyclines are chemotherapeutic drugs known to induce heart failure in a dose-dependent manner. Mechanisms involved in anthracycline cardiotoxicity are an area of relevant investigation. Caveolins bind, organize and regulate receptors and signaling molecules within cell membranes. Caveolin-3 (Cav-3), integrins and related membrane repair proteins can function as cardioprotective proteins. Expression of these proteins in anthracycline-induced heart failure has not been evaluated. We tested the hypothesis that daunorubicin alters cardioprotective protein expression in the heart. Rabbits were administered daunorubicin (3 mg/kg, IV) weekly, for three weeks or nine weeks. Nine weeks but not three weeks of daunorubicin resulted in progressive reduced left ventricular function. Cav-3 expression in the heart was unchanged at three weeks of daunorubicin and increased in nine week treated rabbits when compared to control hearts. Electron microscopy showed caveolae in the heart were increased and mitochondrial number and size were decreased after nine weeks of daunorubicin. Activated beta-1 (ß1) integrin and the membrane repair protein MG53 were increased after nine weeks of daunorubicin vs. controls with no change at the three week time point. The results suggest a potential pathophysiological role for Cav3, integrins and membrane repair in daunorubicin-induced heart failure.


Subject(s)
Anthracyclines/toxicity , Caveolins/metabolism , Daunorubicin/toxicity , Heart Failure/metabolism , Integrins/metabolism , Animals , Blotting, Western , Cardiotoxicity/blood , Cardiotoxicity/metabolism , Cholesterol/blood , Cholesterol/metabolism , Echocardiography , Heart Failure/chemically induced , Immunohistochemistry , Microscopy, Electron , Myocardium/metabolism , Myocardium/pathology , Rabbits
20.
Hum Gene Ther ; 28(5): 378-384, 2017 05.
Article in English | MEDLINE | ID: mdl-28322590

ABSTRACT

Despite improvements in drug and device therapy for heart failure, hospitalization rates and mortality have changed little in the past decade. Randomized clinical trials using gene transfer to improve function of the failing heart are the focus of this review. Four randomized clinical trials of gene transfer in heart failure with reduced ejection fraction (HFrEF) have been published. Each enrolled patients with stable symptomatic HFrEF and used either intracoronary delivery of a virus vector or endocardial injection of a plasmid. The initial CUPID trial randomized 14 subjects to placebo and 25 subjects to escalating doses of adeno-associated virus type 1 encoding sarcoplasmic reticulum calcium ATPase (AAV1.SERCA2a). AAV1.SERCA2a was well tolerated, and the high-dose group met a 6 month composite endpoint. In the subsequent CUPID-2 study, 243 subjects received either placebo or the high dose of AAV1.SERCA2a. AAV1.SERCA2a administration, while safe, failed to meet the primary or any secondary endpoints. STOP-HF used plasmid endocardial injection of stromal cell-derived factor-1 to promote stem-cell recruitment. In a 93-subject trial of patients with ischemic etiology heart failure, the primary endpoint (symptoms and 6 min walk distance) failed, but subgroup analyses showed improvements in subjects with the lowest ejection fractions. A fourth trial randomized 14 subjects to placebo and 42 subjects to escalating doses of adenovirus-5 encoding adenylyl cyclase 6 (Ad5.hAC6). There were no safety concerns, and patients in the two highest dose groups (combined) showed improvements in left ventricular function (left ventricular ejection fraction and -dP/dt). The safety data from four randomized clinical trials of gene transfer in patients with symptomatic HFrEF suggest that this approach can be conducted with acceptable risk, despite invasive delivery techniques in a high-risk population. Additional trials are necessary before the approach can be endorsed for clinical practice.


Subject(s)
Gene Transfer Techniques/trends , Genetic Therapy , Heart Failure/therapy , Sarcoplasmic Reticulum Calcium-Transporting ATPases/therapeutic use , Dependovirus , Female , Heart Failure/genetics , Heart Failure/physiopathology , Humans , Male , Parvovirinae/genetics , Randomized Controlled Trials as Topic , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...