Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Chromatogr A ; 1581-1582: 125-134, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30466954

ABSTRACT

Fuel chromatography is inherently limited by the high complexity of petroleum fuel compositions. In practice, almost no fuel components are fully resolved in gas chromatography. This is due to both insufficient peak capacity for the large number of individual components within time and chromatographic efficiency constraints, and insufficient resolving power of the stationary phase in the gas chromatography column relative to the many structurally similar isomers or homologs present in petrochemical fuels. Multidimensional approaches, longer columns and slower heating rates can offer some benefits but will not necessarily fully resolve co-eluting fuel compounds, especially within reasonable analysis times. The following work details how deconvolved mass spectral loadings, combined with library matching, provide a quality metric against which to automatically evaluate results obtained from an experimental evolving window factor analysis-multivariate curve resolution deconvolution algorithm applied to gas chromatography-mass spectrometry data. This algorithm was evaluated in the context of trace component detection in synthetic fuel data sets, dodecane and tetradecane detection in petrochemical fuels, and the detection of natural products unlikely to be present in petrochemical fuels. In the case of the trace component detection challenge, the experimental algorithm outperformed a control algorithm that utilized a singular value-based quality metric. Meanwhile, when detecting dodecane, tetradecane, and natural products in petrochemical fuels, the experimental algorithm allowed for higher-quality compound identification results than could be obtained without peak deconvolution, thus reliably improving fuel component resolution in an automated fashion.


Subject(s)
Algorithms , Gas Chromatography-Mass Spectrometry , Factor Analysis, Statistical , Multivariate Analysis , Petroleum/analysis
2.
Rev Sci Instrum ; 88(3): 034104, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28372430

ABSTRACT

A novel vapor delivery testbed, referred to as the Trace Explosives Sensor Testbed, or TESTbed, is demonstrated that is amenable to both high- and low-volatility explosives vapors including nitromethane, nitroglycerine, ethylene glycol dinitrate, triacetone triperoxide, 2,4,6-trinitrotoluene, pentaerythritol tetranitrate, and hexahydro-1,3,5-trinitro-1,3,5-triazine. The TESTbed incorporates a six-port dual-line manifold system allowing for rapid actuation between a dedicated clean air source and a trace explosives vapor source. Explosives and explosives-related vapors can be sourced through a number of means including gas cylinders, permeation tube ovens, dynamic headspace chambers, and a Pneumatically Modulated Liquid Delivery System coupled to a perfluoroalkoxy total-consumption microflow nebulizer. Key features of the TESTbed include continuous and pulseless control of trace vapor concentrations with wide dynamic range of concentration generation, six sampling ports with reproducible vapor profile outputs, limited low-volatility explosives adsorption to the manifold surface, temperature and humidity control of the vapor stream, and a graphical user interface for system operation and testing protocol implementation.

3.
Anal Chim Acta ; 584(1): 78-88, 2007 Feb 12.
Article in English | MEDLINE | ID: mdl-17386588

ABSTRACT

Electrochemical sensors composed of a ceramic-metallic (cermet) solid electrolyte are used for the detection of gaseous sulfur compounds SO(2), H(2)S, and CS(2) in a study involving 11 toxic industrial chemical (TIC) compounds. The study examines a sensor array containing four cermet sensors varying in electrode-electrolyte composition, designed to offer selectivity for multiple compounds. The sensors are driven by cyclic voltammetry to produce a current-voltage profile for each analyte. Raw voltammograms are processed by background subtraction of clean air, and the four sensor signals are concatenated to form one vector of points. The high-resolution signal is compressed by wavelet transformation and a probabilistic neural network is used for classification. In this study, training data from one sensor array was used to formulate models which were validated with data from a second sensor array. Of the 11 gases studied, 3 that contained sulfur produced the strongest responses and were successfully analyzed when the remaining compounds were treated as interferents. Analytes were measured from 10 to 200% of their threshold-limited value (TLV) according to the 8-h time weighted average (TWA) exposure limits defined by the National Institute of Occupational Safety and Health (NIOSH). True positive classification rates of 93.3, 96.7, and 76.7% for SO(2), H(2)S, and CS(2), respectively, were achieved for prediction of one sensor unit when a second sensor was used for modeling. True positive rates of 83.3, 90.0, and 90.0% for SO(2), H(2)S, and CS(2), respectively, were achieved for the second sensor unit when the first sensor unit was used for modeling. Most of the misclassifications were for low concentration levels (such 10-25% TLV) in which case the compound was classified as clean air. Between the two sensors, the false positive rates were 2.2% or lower for the three sulfur compounds, 0.9% or lower for the interferents (eight remaining analytes), and 5.8% or lower for clean air. The cermet sensor arrays used in this analysis are rugged, low cost, reusable, and show promise for multiple compound detection at parts-per-million (ppm) levels.


Subject(s)
Cermet Cements , Gases/analysis , Sulfur Compounds/analysis , Ammonia/analysis , Carbon Disulfide/analysis , Carbon Monoxide/analysis , Electrochemistry/methods , Electrolytes , Gases/classification , Hydrogen Sulfide/analysis , Molecular Probe Techniques , Sulfur Compounds/classification , Sulfur Dioxide/analysis
SELECTION OF CITATIONS
SEARCH DETAIL