Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Oral Dis ; 28(5): 1306-1326, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35226783

ABSTRACT

Clefts of the lip and palate (CLP), the major causes of congenital facial malformation globally, result from failure of fusion of the facial processes during embryogenesis. With a prevalence of 1 in 500-2500 live births, CLP causes major morbidity throughout life as a result of problems with facial appearance, feeding, speaking, obstructive apnoea, hearing and social adjustment and requires complex, multi-disciplinary care at considerable cost to healthcare systems worldwide. Long-term outcomes for affected individuals include increased mortality compared with their unaffected siblings. The frequent occurrence and major healthcare burden imposed by CLP highlight the importance of dissecting the molecular mechanisms driving facial development. Identification of the genetic mutations underlying syndromic forms of CLP, where CLP occurs in association with non-cleft clinical features, allied to developmental studies using appropriate animal models is central to our understanding of the molecular events underlying development of the lip and palate and, ultimately, how these are disturbed in CLP.


Subject(s)
Cleft Lip , Cleft Palate , Cleft Lip/complications , Cleft Lip/genetics , Cleft Palate/complications , Cleft Palate/genetics , Embryonic Development/genetics , Face , Humans
2.
Hum Mutat ; 42(8): 1066-1078, 2021 08.
Article in English | MEDLINE | ID: mdl-34004033

ABSTRACT

Genome-wide association studies (GWAS) have generated unprecedented insights into the genetic etiology of orofacial clefting (OFC). The moderate effect sizes of associated noncoding risk variants and limited access to disease-relevant tissue represent considerable challenges for biological interpretation of genetic findings. As rare variants with stronger effect sizes are likely to also contribute to OFC, an alternative approach to delineate pathogenic mechanisms is to identify private mutations and/or an increased burden of rare variants in associated regions. This report describes a framework for targeted resequencing at selected noncoding risk loci contributing to nonsyndromic cleft lip with/without cleft palate (nsCL/P), the most frequent OFC subtype. Based on GWAS data, we selected three risk loci and identified candidate regulatory regions (CRRs) through the integration of credible SNP information, epigenetic data from relevant cells/tissues, and conservation scores. The CRRs (total 57 kb) were resequenced in a multiethnic study population (1061 patients; 1591 controls), using single-molecule molecular inversion probe technology. Combining evidence from in silico variant annotation, pedigree- and burden analyses, we identified 16 likely deleterious rare variants that represent new candidates for functional studies in nsCL/P. Our framework is scalable and represents a promising approach to the investigation of additional congenital malformations with multifactorial etiology.


Subject(s)
Cleft Lip , Cleft Palate , Cleft Lip/genetics , Cleft Palate/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide
3.
HGG Adv ; 2(3): 100038, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-35047836

ABSTRACT

Non-syndromic cleft lip with or without cleft palate (nsCL/P) is a common congenital facial malformation with a multifactorial etiology. Genome-wide association studies (GWASs) have identified multiple genetic risk loci. However, functional interpretation of these loci is hampered by the underrepresentation in public resources of systematic functional maps representative of human embryonic facial development. To generate novel insights into the etiology of nsCL/P, we leveraged published GWAS data on nsCL/P as well as available chromatin modification and expression data on mid-facial development. Our analyses identified five novel risk loci, prioritized candidate target genes within associated regions, and highlighted distinct pathways. Furthermore, the results suggest the presence of distinct regulatory effects of nsCL/P risk variants throughout mid-facial development and shed light on its regulatory architecture. Our integrated data provide a platform to advance hypothesis-driven molecular investigations of nsCL/P and other human facial defects.

4.
Semin Cell Dev Biol ; 91: 75-83, 2019 07.
Article in English | MEDLINE | ID: mdl-28803895

ABSTRACT

Development of the secondary palate involves a complex series of embryonic events which, if disrupted, result in the common congenital anomaly cleft palate. The secondary palate forms from paired palatal shelves which grow initially vertically before elevating to a horizontal position above the tongue and fusing together in the midline via the medial edge epithelia. As the epithelia of the vertical palatal shelves are in contact with the mandibular and lingual epithelia, pathological fusions between the palate and the mandible and/or the tongue must be prevented. This function is mediated by the single cell layered periderm which forms in a distinct and reproducible pattern early in embryogenesis, exhibits highly polarised expression of adhesion complexes, and is shed from the outer surface as the epidermis acquires its barrier function. Disruption of periderm formation and/or function underlies a series of birth defects that exhibit multiple inter-epithelial adhesions including the autosomal dominant popliteal pterygium syndrome and the autosomal recessive cocoon syndrome and Bartsocas Papas syndrome. Genetic analyses of these conditions have shown that IRF6, IKKA, SFN, RIPK4 and GRHL3, all of which are under the transcriptional control of p63, play a key role in periderm formation. Despite these observations, the medial edge epithelia must rapidly acquire the capability to fuse if the palatal shelves are not to remain cleft. This process is driven by TGFß3-mediated, down-regulation of p63 in the medial edge epithelia which allows periderm migration out of the midline epithelial seam and reduces the proliferative potential of the midline epithelial seam thereby preventing cleft palate. Together, these findings indicate that periderm plays a transient but fundamental role during embryogenesis in preventing pathological adhesion between intimately apposed, adhesion-competent epithelia.


Subject(s)
Cleft Palate/embryology , Epidermis/embryology , Epithelium/embryology , Palate/embryology , Animals , Cell Differentiation/genetics , Cleft Palate/genetics , Epidermis/metabolism , Epithelium/metabolism , Gene Expression Regulation, Developmental , Humans , Palate/cytology , Palate/metabolism , Signal Transduction/genetics , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics
5.
PLoS Genet ; 13(6): e1006828, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28604778

ABSTRACT

Cleft palate is a common congenital disorder that affects up to 1 in 2500 live births and results in considerable morbidity to affected individuals and their families. The aetiology of cleft palate is complex with both genetic and environmental factors implicated. Mutations in the transcription factor p63 are one of the major individual causes of cleft palate; however, the gene regulatory networks in which p63 functions remain only partially characterized. Our findings demonstrate that p63 functions as an essential regulatory molecule in the spatio-temporal control of palatal epithelial cell fate to ensure appropriate fusion of the palatal shelves. Initially, p63 induces periderm formation and controls its subsequent maintenance to prevent premature adhesion between adhesion-competent, intra-oral epithelia. Subsequently, TGFß3-induced down-regulation of p63 in the medial edge epithelia of the palatal shelves is a pre-requisite for palatal fusion by facilitating periderm migration from, and reducing the proliferative potential of, the midline epithelial seam thereby preventing cleft palate.


Subject(s)
Cleft Palate/genetics , Gene Regulatory Networks/genetics , Phosphoproteins/genetics , Trans-Activators/genetics , Transforming Growth Factor beta3/genetics , Animals , Cell Movement/genetics , Cell Proliferation/genetics , Cleft Palate/physiopathology , Disease Models, Animal , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental , Humans , Mice , Mutation , Phosphoproteins/biosynthesis , Signal Transduction/genetics , Trans-Activators/biosynthesis
6.
Hum Mol Genet ; 26(4): 829-842, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28087736

ABSTRACT

Nonsyndromic cleft lip with or without cleft palate (nsCL/P) is among the most common human birth defects with multifactorial etiology. Here, we present results from a genome-wide imputation study of nsCL/P in which, after adding replication cohort data, four novel risk loci for nsCL/P are identified (at chromosomal regions 2p21, 14q22, 15q24 and 19p13). On a systematic level, we show that the association signals within this high-density dataset are enriched in functionally-relevant genomic regions that are active in both human neural crest cells (hNCC) and mouse embryonic craniofacial tissue. This enrichment is also detectable in hNCC regions primed for later activity. Using GCTA analyses, we suggest that 30% of the estimated variance in risk for nsCL/P in the European population can be attributed to common variants, with 25.5% contributed to by the 24 risk loci known to date. For each of these, we identify credible SNPs using a Bayesian refinement approach, with two loci harbouring only one probable causal variant. Finally, we demonstrate that there is no polygenic component of nsCL/P detectable that is shared with nonsyndromic cleft palate only (nsCPO). Our data suggest that, while common variants are strongly contributing to risk for nsCL/P, they do not seem to be involved in nsCPO which might be more often caused by rare deleterious variants. Our study generates novel insights into both nsCL/P and nsCPO etiology and provides a systematic framework for research into craniofacial development and malformation.


Subject(s)
Chromosomes, Human/genetics , Cleft Lip/genetics , Cleft Palate/genetics , Databases, Genetic , Genetic Loci , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Animals , Cleft Lip/metabolism , Cleft Lip/pathology , Cleft Palate/metabolism , Cleft Palate/pathology , Female , Humans , Male , Mice
7.
Dev Dyn ; 245(9): 937-46, 2016 09.
Article in English | MEDLINE | ID: mdl-27302476

ABSTRACT

BACKGROUND: Non-gustatory filiform papillae play critical roles in helping to grip food, drawing food to the esophagus, cleaning the mouth, and spreading saliva. The molecular mechanisms of filiform tongue papillae development however are not fully understood. RESULTS: We found Ikkα and Irf6 expression in developing tongue epithelium, and describe here specific tongue abnormalities in mice with mutation of these genes, indicating a role for Ikkα and Irf6 in filiform papillae development. Ikkα and Irf6 mutant tongues showed ectopic vertical epithelium at the midline, while lateral sides of mutant tongues adhered to the oral mucosa. Both the ectopic median vertical epithelium and adhered epithelium exhibited the presence of filiform tongue papillae, whereas epithelium between the median vertical epithelium and adhered tongue showed a loss of filiform tongue papillae. Timing of filiform papillae development was found to be slightly different between the midline and lateral regions of the wild-type tongue. CONCLUSIONS: Filiform papillae thus develop through distinct molecular mechanisms between the regions of tongue dorsum in the medio-lateral axis, with some filiform papillae developing under the control of Ikkα and Irf6. Developmental Dynamics 245:937-946, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Epithelium/metabolism , I-kappa B Kinase/metabolism , Interferon Regulatory Factors/metabolism , Tongue/embryology , Tongue/metabolism , Animals , Epithelium/embryology , Epithelium/ultrastructure , I-kappa B Kinase/genetics , Immunohistochemistry , In Situ Hybridization , Interferon Regulatory Factors/genetics , Mice , Mice, Transgenic , Microscopy, Electron, Scanning , Tongue/ultrastructure
8.
J Clin Invest ; 124(9): 3891-900, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25133425

ABSTRACT

Appropriate development of stratified, squamous, keratinizing epithelia, such as the epidermis and oral epithelia, generates an outer protective permeability barrier that prevents water loss, entry of toxins, and microbial invasion. During embryogenesis, the immature ectoderm initially consists of a single layer of undifferentiated, cuboidal epithelial cells that stratifies to produce an outer layer of flattened periderm cells of unknown function. Here, we determined that periderm cells form in a distinct pattern early in embryogenesis, exhibit highly polarized expression of adhesion complexes, and are shed from the outer surface of the embryo late in development. Mice carrying loss-of-function mutations in the genes encoding IFN regulatory factor 6 (IRF6), IκB kinase-α (IKKα), and stratifin (SFN) exhibit abnormal epidermal development, and we determined that mutant animals exhibit dysfunctional periderm formation, resulting in abnormal intracellular adhesions. Furthermore, tissue from a fetus with cocoon syndrome, a lethal disorder that results from a nonsense mutation in IKKA, revealed an absence of periderm. Together, these data indicate that periderm plays a transient but fundamental role during embryogenesis by acting as a protective barrier that prevents pathological adhesion between immature, adhesion-competent epithelia. Furthermore, this study suggests that failure of periderm formation underlies a series of devastating birth defects, including popliteal pterygium syndrome, cocoon syndrome, and Bartsocas-Papas syndrome.


Subject(s)
Embryonic Development , Epidermis/embryology , 14-3-3 Proteins/physiology , Animals , Cell Adhesion , Cell Polarity , Ectoderm/embryology , Epidermal Cells , Epithelium/embryology , Epithelium/physiology , Humans , I-kappa B Kinase/physiology , Interferon Regulatory Factors/physiology , Mice , Mutation
9.
J Invest Dermatol ; 132(6): 1543-53, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22377760

ABSTRACT

The 14-3-3σ (Stratifin; Sfn) is a cell cycle regulator intimately involved in the program of epithelial keratinization. 14-3-3σ is unique in that it is expressed primarily in epithelial cells and is frequently silenced in epithelial cancers. Despite its well-documented role as a cell cycle regulator and as a tumor suppressor, the function of 14-3-3σ in the intricate balance of proliferation and differentiation in epithelial development is poorly understood. A mutation in 14-3-3σ was found to be responsible for the repeated epilation (Er) phenotype. It has previously been shown that Sfn(+/Er) mice are characterized by repeated hair loss and regrowth, whereas Sfn(Er/Er) mice die at birth displaying severe oral fusions and limb abnormalities as a result of defects in keratinizing epithelia. Here we show that mice heterozygous for the 14-3-3σ mutation have severe defects in hair shaft differentiation, resulting in destruction of the hair shaft during morphogenesis. Furthermore, we report that the interfollicular epidermis and sebaceous glands are hyperproliferative, coincident with expanded nuclear Yap1 (Yes-associated protein 1)--a critical modulator of epidermal stem cell proliferation. We also report that hair follicle stem cells in the bulge cycle abnormally, raising important questions as to the role of 14-3-3σ in the bulge.


Subject(s)
14-3-3 Proteins/physiology , Alopecia/physiopathology , Epidermis/physiology , Hair Follicle/physiology , Hair/growth & development , 14-3-3 Proteins/genetics , Alopecia/genetics , Alopecia/pathology , Animals , Cell Proliferation , Epidermis/pathology , Genes, Homeobox/physiology , Hair/physiology , Hair Follicle/pathology , Hyperplasia/genetics , Hyperplasia/pathology , Hyperplasia/physiopathology , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Mutant Strains , Phenotype
10.
Dev Biol ; 365(1): 61-70, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22366192

ABSTRACT

Thickening and the subsequent invagination of the epithelium are an important initial step in ectodermal organ development. Ikkα has been shown to play a critical role in controlling epithelial growth, since Ikkα mutant mice show protrusions (evaginations) of incisor tooth, whisker and hair follicle epithelium rather than invagination. We show here that mutation of the Interferon regulatory factor (Irf) family, Irf6 also results in evagination of incisor epithelium. In common with Ikkα mutants, Irf6 mutant evagination occurs in a NF-κB-independent manner and shows the same molecular changes as those in Ikkα mutants. Irf6 thus also plays a critical role in regulating epithelial invagination. In addition, we also found that canonical Wnt signaling is upregulated in evaginated incisor epithelium of both Ikkα and Irf6 mutant embryos.


Subject(s)
Epithelium/embryology , Interferon Regulatory Factors/genetics , Tooth/embryology , Animals , Epithelium/physiology , Gene Expression Regulation, Developmental , I-kappa B Kinase/genetics , Mice , Mutation , Organogenesis , Signal Transduction , Tooth/cytology , Tooth/physiology
11.
J Invest Dermatol ; 129(10): 2358-64, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19387480

ABSTRACT

The hair follicles (HFs) and the interfollicular epidermis (IFE) of intact mature skin are maintained by distinct stem cell populations. Upon wounding, however, emigration of HF keratinocytes to the IFE plays a role in acute stages of healing. In addition to this repair function, rapidly cycling cells of the upper HF have been observed transiting to the IFE in neonatal skin. Here we report that an absence of HF development leads to shortening and kinking of the mouse tail. These skeletal defects are reduced by stimulating keratinocyte proliferation, suggesting that they arise from impaired epidermal expansion. We confirm that rapidly cycling cells of the HF emigrate to the IFE of the neonatal tail. These results suggest that an absence of HFs results in impaired skin growth that is unable to keep pace with the rapidly elongating axial skeleton of the tail. Thus, in addition to their role in wound repair, HFs can make a significant contribution to lateral expansion of the IFE in the absence of trauma.


Subject(s)
Cell Movement/physiology , Cell Proliferation , Hair Follicle/physiology , Keratinocytes/cytology , Skin/cytology , Skin/growth & development , Animals , Animals, Newborn , Bone and Bones/pathology , Edar-Associated Death Domain Protein/genetics , Edar-Associated Death Domain Protein/metabolism , Keratinocytes/metabolism , Mice , Mice, Mutant Strains , Mutation/genetics , Skin/embryology , Tail/pathology , Wound Healing/physiology
12.
Dev Dyn ; 237(6): 1653-61, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18498089

ABSTRACT

Id proteins are involved in the transcriptional control of many fundamental biological processes, including differentiation and lineage commitment. We studied Id2, Id3, and Id4 protein expression during different stages of rat vibrissa follicle development using immunohistochemistry. Id2 was highly expressed in the cytoplasm of specialized cells in the basal epidermis and outer root sheath during early stages of follicle development. These cells were identified as Merkel cells (MCs) by means of double-immunolabeling with synaptophysin and cytokeratin-20, and persisted in neonatal follicles. Id3 immunofluorescence was characterized by membrane-associated expression in basal epithelial cells of follicles early in development. Subsequently follicle epithelial cells switched to have strong nuclear labeling, also a feature of newly forming dermal papilla cells. Id4 expression was primarily associated with innervation of the developing follicle musculature. These observations illustrate dynamic expression patterns of Id2 and Id3 proteins in developing follicles and specifically link Id2 expression to Merkel cell specification.


Subject(s)
Gene Expression Regulation, Developmental , Hair Follicle/embryology , Inhibitor of Differentiation Protein 2/physiology , Inhibitor of Differentiation Proteins/physiology , Merkel Cells/cytology , Vibrissae/embryology , Animals , Animals, Newborn , Keratin-20/biosynthesis , Microscopy, Fluorescence , Rats , Rats, Wistar , Synaptophysin/biosynthesis , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...