Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Cryst Growth Des ; 24(12): 4894-4905, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38911133

ABSTRACT

A methodology for the prediction of face-specific relative dissolution rates for single-faceted crystals accounting for inequivalent wetting by the solvent is presented. This method is an extended form of a recent binding energy model developed by the authors (Najib et al., Cryst. Growth & Des. 2021, 21(3), 1482-1495) for predicting the face-specific dissolution rates for single-faceted crystals from the solid-state intermolecular binding energies in a vacuum. The principal modification is that the equivalent wetting of the crystal surfaces is no longer assumed, since interactions between the crystal surfaces and the solution-state molecules are incorporated. These surface interactions have been investigated by using a grid-based systematic search method. The face-specific dissolution rates predicted by the extended binding energy model for ibuprofen in a 95% v/v ethanol-water solution and furosemide in an aqueous medium have been validated against the published experimental results and are in excellent agreement. This model is a step forward toward accurate predictions of the relative face-specific dissolution rates for a wide variety of faceted crystals in any dissolution medium.

2.
Mol Pharm ; 20(10): 5019-5031, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37682633

ABSTRACT

Grid-based systematic search methods are used to investigate molecule-molecule, molecule-surface, and surface-surface contributions to interparticle interactions in order to identify the crystal faces that most strongly affect particle behavior during powder blend formulation and delivery processes. The model system comprises terbutaline sulfate (TBS) as an active pharmaceutical ingredient (API) and α-form lactose monohydrate (LMH). A combination of systematic molecular modeling and X-ray computed tomography (XCT) is used to determine not only the adhesive and cohesive interparticle energies but, also the agglomeration behavior during manufacturing and de-agglomeration behavior during delivery after inhalation. This is achieved through a detailed examination of the balance between the adhesive and cohesive energies with the XCT results confirming the blend segregation tendencies, through the particle-particle de-agglomeration process. The results reveal that the cohesive interaction energies of TBS-TBS are higher than the adhesive energies between TBS and LMH, but that the cohesive energies of LMH-LMH are the smallest between molecule and molecule, molecule and surface, and surface and surface. This shows how systematic grid-search molecular modeling along with XCT can guide the digital formulation design of inhalation powders in order to achieve optimum aerosolization and efficacy for inhaled medicines. This will lead to faster pharmaceutical design with less variability, higher quality, and enhanced performance.

3.
Data Brief ; 50: 109485, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37645445

ABSTRACT

Detailed atomistic interactions of 1,1,1,2-tetrafluoroethane (HFA-134a) liquid were presented in a data format, namely, DL_ANALYSER Notation for Atomic Interactions (DANAI), that annotates precisely the nature of interactions that is discoverable and searchable without having to resolve to diagrammatic illustrations. The datasets were obtained from raw atomic trajectory files of HFA-134a pure liquid models produced by using DL_POLY molecular dynamics software package. The trajectory datafiles contain expressions of atomic species in a natural chemical sense, and hence, provide localized key interactions, 'at a glance', of the liquid model on otherwise a typically disordered system consists of complex network of intermolecular interactions. The data provide insights to detailed structural behavior of molecules in liquid phase, and can be used as cheminformatics comparative investigations, linking to other molecular system models that contain similar interaction types and chemical species. This can form the foundation of investigations into the role of HFA-134a plays within different applications. For example, it can be used to compare structural and atomic interaction differences with alternative refrigerants, or as liquid propellants in pharmaceutical devices when solvating formulation ingredients.

4.
Cryst Growth Des ; 22(5): 3042-3059, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35529067

ABSTRACT

The solvent-mediated crystal morphologies of the α and ß polymorphic forms of l-glutamic acid are presented. This work applies a digital mechanistically based workflow that encompasses calculation of the crystal lattice energy and its constituent intermolecular synthons, their interaction energies, and their key role in understanding and predicting crystal morphology as well as assessing the surface chemistry, topology, and solvent binding on crystal habit growth surfaces. Through a comparison between the contrasting morphologies of the conformational polymorphs of l-glutamic acid, this approach highlights how the interfacial chemistry of organic crystalline materials and their inherent anisotropic interactions with their solvation environments direct their crystal habit with potential impact on their further downstream processing behavior.

5.
Faraday Discuss ; 235(0): 467-489, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35389403

ABSTRACT

Para amino benzoic acid (PABA) has two well-characterised α- and ß-polymorphic forms and, whilst both crystallise in the monoclinic space group P21/n, they have quite different crystal chemistry and crystallisability behaviour. Previous work has shown that the molecular conformation deformation energy in the crystalline state is higher for the ß-form than for the α-form and that the lattice energy for the former converges more slowly than for the latter overall. This suggests that not only is there a higher barrier to crystallisation for the ß-form but also that low solution supersaturations might be needed for it to preferentially nucleate. Additionally, solute cluster propensity and solute solvation energetic analysis highlight the importance of an aqueous solvation environment in inhibiting the α-form's strong OH⋯O carboxylic acid hydrogen bond (H-bond) dimer. Despite this, the detailed molecular-scale pathway from solvated molecules to 3D crystallographic structure still remains unclear, most notably regarding how the nucleation process is activated and how, as a result, this mediates the preferential formation of either of the two polymorphic forms. Molecular dynamics (MD) simulations coupled with FTIR studies and intermolecular synthon analysis address this issue through characterisation of the propensity of the incipient bulk synthons that are important in the crystallisation of the two polymorphic forms within the solution state. MD molecular trajectory analysis within crystallisation solutions reveals a greater propensity for OH⋯O synthons (both single H-bonds and homodimers) typical of the α-form and NH⋯O synthons found in both the α- and ß-forms when compared to aqueous solution but much lower propensities for the ß-form's "fingerprinting" OH⋯N and π-π stacking synthons. In contrast, data from the aqueous solution environment reveals a much greater propensity for the ß-form's π-π interaction synthons. IR dilution studies in acetonitrile in the carbonyl region reveal the presence of two CO vibrational stretching bands, whose relative intensities vary as a function of solution dilution. These were assigned to the solvated PABA monomer and a COOH dimer of PABA. Similar data in ethanol shows a main CO stretching band with a shoulder peak suggesting a similar monomer vs. dimer speciation may exist in this solvent. The IR data is consistent with the organic solvent MD data, albeit the corresponding analysis for the aqueous solution was precluded due to the latter's strong OH vibrational mode which restricted validation in aqueous solutions.


Subject(s)
4-Aminobenzoic Acid , Amino Acids , Hydrogen Bonding , Molecular Conformation , Solvents/chemistry , Water/chemistry
6.
Article in English | MEDLINE | ID: mdl-31567078

ABSTRACT

This study lays a foundation for the design of the SH0 plate acoustic wave (PAW) resonators based on LiNbO3 plate, and are applicable to the ultra-wideband filters and next-generation tunable filters. The coupling coefficient ( k2 ) of SH0 mode is optimized to as high as 55% and wideband spurious are well controlled by analyzing the propagation characteristics of plate modes in LiNbO3. The SH0 mode is demonstrated to be slowly dispersive and features the superiority of interdigital transducer (IDT)-defining frequency over most other plate modes. On the device level, the transducer types and electrode materials are investigated and compared. In addition, for edge-reflected SH0 resonators, stopband dispersion analysis is provided and the longitudinal ripples are suppressed. For edge-reflected SH0 resonators, a novel perfect edge reflector is proposed with elimination of longitudinal spurious ripples.

7.
Mol Pharm ; 12(1): 18-33, 2015 Jan 05.
Article in English | MEDLINE | ID: mdl-25380027

ABSTRACT

The synthonic modeling approach provides a molecule-centered understanding of the surface properties of crystals. It has been applied extensively to understand crystallization processes. This study aimed to investigate the functional relevance of synthonic modeling to the formulation of inhalation powders by assessing cohesivity of three active pharmaceutical ingredients (APIs, fluticasone propionate (FP), budesonide (Bud), and salbutamol base (SB)) and the commonly used excipient, α-lactose monohydrate (LMH). It is found that FP (-11.5 kcal/mol) has a higher cohesive strength than Bud (-9.9 kcal/mol) or SB (-7.8 kcal/mol). The prediction correlated directly to cohesive strength measurements using laser diffraction, where the airflow pressure required for complete dispersion (CPP) was 3.5, 2.0, and 1.0 bar for FP, Bud, and SB, respectively. The highest cohesive strength was predicted for LMH (-15.9 kcal/mol), which did not correlate with the CPP value of 2.0 bar (i.e., ranking lower than FP). High FP-LMH adhesive forces (-11.7 kcal/mol) were predicted. However, aerosolization studies revealed that the FP-LMH blends consisted of agglomerated FP particles with a large median diameter (∼4-5 µm) that were not disrupted by LMH. Modeling of the crystal and surface chemistry of LMH identified high electrostatic and H-bond components of its cohesive energy due to the presence of water and hydroxyl groups in lactose, unlike the APIs. A direct comparison of the predicted and measured cohesive balance of LMH with APIs will require a more in-depth understanding of highly hydrogen-bonded systems with respect to the synthonic engineering modeling tool, as well as the influence of agglomerate structure on surface-surface contact geometry. Overall, this research has demonstrated the possible application and relevance of synthonic engineering tools for rapid pre-screening in drug formulation and design.


Subject(s)
Administration, Inhalation , Chemistry, Pharmaceutical/methods , Powders/chemistry , Aerosols , Albuterol/chemistry , Androstadienes/chemistry , Budesonide/chemistry , Chromatography, Gas , Computer Simulation , Crystallization , Drug Delivery Systems , Excipients/chemistry , Fluticasone , Hydrogen Bonding , Lactose/chemistry , Lasers , Models, Theoretical , Particle Size , Static Electricity , Surface Properties
8.
J Nanosci Nanotechnol ; 13(2): 808-12, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23646520

ABSTRACT

The nano-particles in colloidal dispersions usually carry an electrical charge and have an electrical double layer associated with their surfaces, however, while remaining electrically neutral overall. Under the effect of an external electric field, the electrical double layer is deformed or in other words, the suspension is polarized. The mechanism of electrochemical polarization is partially dependent on the surface charge and the size of particles. It is known that properties of nano-particles in suspensions may affect the colloids' electrical-impedance spectroscopic properties, e.g., the complex impedance, complex permittivity, complex conductivity, relaxation frequency, and phase angle. However, reports on colloids' electrical-impedance spectroscopic properties are very limited in the current literature. In this paper a simple system, aqueous silica suspensions, was studied using electrical impedance spectroscopy (EIS). A series of experiments were designed to reveal the effect of particle size on the electrical impedance spectra of silica suspensions. The size effect was studied on silica suspensions with the same concentration (10.0 wt%) but different principle particle size (12 nm, 35 nm, 70 nm, 90 nm and 220 nm). The EIS results show that the relaxation frequency decreased with increasing of particle size. This tendency is explained by the polarization effect of electrical double layer and two dispersion mechanisms were analysed in this study. The results provide supportive information for on-line characterisation of nano-particles using electrical impedance spectroscopy.

9.
J Nanosci Nanotechnol ; 13(2): 1047-52, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23646569

ABSTRACT

Nanoparticles, which are desirable to a wide range of industries, have been shown to exhibit enhanced properties compared to their bulk counterparts. This enhancement has mostly been attributed to their large surface area-to-volume ratio and has attracted huge research interest in recent years. In this work, molecular dynamics simulations have been performed on anatase TiO2 nanoparticles with sizes ranging between 2 and 6 nm and at different temperatures. Thermodynamic and structural properties such as total system energies and radial distribution functions are reported for the different nanoparticle sizes and their dependence on temperature, revealed. At high temperatures, the structures are seen to transform from a highly crystalline to liquid form. Studies conducted on the change of final structure (after simulation) with respect to the initial structure (before simulation) revealed that after simulation, structural disordering (i.e., change in atom position) is more visible at the surface layer compared to the bulk of the final structure. Surface energies for the different particle sizes are also reported and it is observed that surface energy at 300 K increases to a maximum (optimum value) as the particle size increases after which no further significant increase is observed. A study on the sphericity of the nanoparticles showed that the particles became less spherical with increase in temperature.

10.
J Phys Chem B ; 114(16): 5441-6, 2010 Apr 29.
Article in English | MEDLINE | ID: mdl-20369862

ABSTRACT

Crystallization in solutions under steady cooling is considered in the case of instantaneous nucleation, in which all crystallites appear at once in the solution and grow in the absence of crystallites born subsequently. Expressions are obtained for the total crystallite volume as a function of the steadily increasing undercooling. These expressions are employed for determining the dependence of the relative critical undercooling u(c) for crystallization on the cooling rate q. The resulting u(c)(q) formula reveals the physical meaning of the parameters in the linear relationship, often reported experimentally, between u(c) and q in double logarithmic coordinates. The results obtained are also directly applicable to overall crystallization of melts at sufficiently small undercoolings.

11.
Langmuir ; 24(23): 13470-6, 2008 Dec 02.
Article in English | MEDLINE | ID: mdl-18991421

ABSTRACT

Surface films of two copolymers of ethylene oxide (E) and butylene oxide (B), namely E23B8 and E87B18, have been examined by Brewster angle microscopy (BAM) and atomic force microscopy (AFM). Isotherms taken on unsupported films of these copolymers at the air-water interface showed a clear gas to liquid phase transition for E57B18 and a barely discernible phase transition for E23B8. The BAM studies showed a gradual brightening of the films as the surface pressure was increased, which was associated with a film thickening and/or a film densification. Several bright spots were also observed within the films, with the number of spots increasing gradually as the film surface pressure was increased. AFM studies of these films did not show any localized ordering, which fits in with the results from our previous X-ray study of these copolymers [Hodges, C. S.; Neville, F.; Konovalov, O.; Gidalevitz, D.; Hamley, I. W.; Langmuir 2006, 22 (21), 8821-8825], where no long-range ordering was observed. AFM imaging showed two sizes of particulates that were irregularly spaced across the film. The larger particulates were associated with silica contaminants from the copolymer synthesis, whereas the smaller particulates were assumed to be aggregated copolymer. An analysis of the semidilute region of the isotherm showed that while both copolymers had intermixed ethylene oxide and butylene oxide units, the lower molecular weight E23B8 copolymer manifested significantly more intermixing than E87B18.


Subject(s)
Epoxy Compounds/chemistry , Membranes, Artificial , Polyethylene Glycols/chemistry , Air , Microscopy/methods , Molecular Conformation , Particle Size , Phase Transition , Surface Properties , Water/chemistry
12.
Faraday Discuss ; 136: 91-106; discussion 107-23, 2007.
Article in English | MEDLINE | ID: mdl-17955805

ABSTRACT

The polymorphic behaviour of the aromatic ketone, benzophenone, which is a conformationally flexible molecule and forms crystal structures dominated by van der Waals intermolecular interactions, is examined. Crystallization of this material from the undercooled molten state yields the two known polymorphic forms, i.e. the stable alpha-form and the metastable beta-form. The relative, energetic stabilities are examined using both crystal lattice and molecular conformational modelling techniques. Examination of nano-sized faceted molecular clusters of these forms, with cluster sizes ranging from 3 to 100 molecules, reveals that at very small cluster size (< 5 molecules) the relative energetic stability of clusters representative for the two forms become very similar, indicating that for high melting undercooling (i.e. small critical cluster size for nucleation) crystallization of the metastable beta-phase becomes more likely. Detailed analysis of the variation in molecular conformations within the simulated molecular clusters reveals more disordered three-dimensional structures at small compared to larger cluster sizes. The conformational disorder was found to be higher for the metastable beta-form. This observation, together with the lower stability of clusters for this form is indicative of the difficulty in achieving crystallization of the metastable beta-form from the melt, which requires a considerable undercooling.

13.
J Pharm Sci ; 96(8): 1967-73, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17323349

ABSTRACT

The poor solubility of potential drug molecules is a significant problem in the design of pharmaceutical formulations. It is well known, however, that the solubility of crystalline materials is enhanced when the particle size is reduced to submicron levels and this factor can be expected to enhance drug product bioavailability. Direct estimation of solubility enhancement, as calculated via the Gibbs-Thompson relationship, demands reasonably accurate values for the particle/solution interfacial tension and, in particular, its anisotropy with respect to the crystal product's habit and morphology. In this article, an improved, more molecule-centered, approach is presented towards the calculation of solubility enhancement factors in which molecular modeling techniques are applied, and the effects associated with both crystal habit modification and solvent choice are examined. A case study for facetted, acetyl salicylic acid (aspirin) crystals in equilibrium with saturated aqueous ethanol solution reveals that their solubility will be enhanced in the range (7-58%) for a crystal size of 0.02 microm, with significantly higher enhancement for crystal morphologies in which the hydrophobic crystal faces are more predominant than the hydrophilic faces and for solvents in which the solubility is smaller.


Subject(s)
Aspirin/chemistry , Chemistry, Pharmaceutical/methods , Aspirin/analogs & derivatives , Crystallization , Ethanol/chemistry , Hydrophobic and Hydrophilic Interactions , Nanotechnology/methods , Particle Size , Solubility , Solvents/chemistry , Water/chemistry
14.
Langmuir ; 22(21): 8821-5, 2006 Oct 10.
Article in English | MEDLINE | ID: mdl-17014123

ABSTRACT

X-ray reflectivity (XR) and grazing incidence X-ray diffraction (GIXD) have been used to examine an oxyethylene-b-oxybutylene (E(23)B(8)) copolymer film at the air-water interface. The XR data were fitted using both a one- and a two-layer model that outputted the film thickness, roughness, and electron density. The best fit to the experimental data was obtained using a two-layer model (representing the oxyethylene and oxybutylene blocks, respectively), which showed a rapid thickening of the copolymer film at pressures above 7 mN/m. The large roughness values found indicate a significant degree of intermixing between the blocks and back up the GIXD data, which showed no long range lateral ordering within the layer. It was found from the electron density model results that there is a large film densification at 7 mN/m, possibly suggesting conformational changes within the film, even though no such change occurs on the pressure-area isotherm at the same surface pressure.

15.
J Pharm Sci ; 95(11): 2361-72, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16886182

ABSTRACT

The development of modeling capabilities for improving the efficiency with which solid-state pharmaceutical products can be developed is a key strategic goal for the pharmaceutical research and development sector. In this context, an important topic is the salt-selection process associated with drug-product formulation development. In this study, a systematic (grid-based) search method is used to predict the host/counter-ion binding for a simple but representative organic salt (i.e., a type I organic acid salt former having a single ionisable group): 3,4,6,7,8,9-hexahydro-2H-pyrimido (1,2-a) pyrimidinium acetate ([H2hpp][O2CCH3]). The relative disposition of the two ionic moieties in the asymmetric unit and, from this, the crystal packing in this compound are also predicted using the systematic grid-based search method linked to the known crystallographic unit cell dimensions. The overall strategy adopted encompasses three main steps: molecular pair search; optimization and clustering; and crystal lattice search and optimization. The predicted results, using this method, reveal a good agreement between the calculated crystal structure and that obtained from the Cambridge Crystallographic Structure Database (CCSD), indicating that the approach offers considerable promise for application as part of an integrated strategy for pharmaceutical salt selection.


Subject(s)
Acetates/chemistry , Pyrimidines/chemistry , Crystallization , Drug Design , Drug Evaluation, Preclinical , Energy Transfer , Models, Molecular , X-Ray Diffraction
16.
Magn Reson Chem ; 44(3): 325-33, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16477682

ABSTRACT

Studies on the solid-state structure of two polymorphs of 4-methyl-2-nitroacetanilide (MNA) were conducted using magic-angle spinning (13)C, (15)N and (1)H NMR spectroscopy, together with first-principles computations of NMR shielding (including use of a program that takes explicit account of the translational symmetry inherent in crystalline structures). The effects on (13)C chemical shifts of side-chain rotations have been explored. Information derived from these studies was then incorporated within a systematic space-search methodology for elucidation of trial crystallographic structures from powder XRD.

17.
Anal Chem ; 77(20): 6563-70, 2005 Oct 15.
Article in English | MEDLINE | ID: mdl-16223241

ABSTRACT

X-ray diffraction is one of the most widely applied methodologies for the in situ analysis of kinetic processes involving crystalline solids. However, due to its relatively high detection limit, it has only limited application in the context of crystallizations from liquids. Methods that can improve the detection limit of X-ray diffraction are therefore highly desirable. Signal processing approaches such as Savitzky-Golay, maximum likelihood, stochastic resonance, and wavelet transforms have been used previously to preprocess X-ray diffraction data. Since all these methods only utilize the frequency information contained in the single X-ray diffraction profile being processed to discriminate between the signals and the noise, they may not successfully identify very weak but important peaks especially when these weak signals are masked by severe noise. Smoothed principal component analysis (SPCA), which takes advantage of both the frequency information and the common variation within a set of profiles, is proposed as a methodology for the preprocessing of the X-ray diffraction data. Two X-ray diffraction data sets are used to demonstrate the effectiveness of the proposed approach. The first was obtained from mannitol-methanol suspensions, and the second data set was generated from slurries of L-glutamic acid (GA) in methanol. The results showed that SPCA can significantly improve the signal-to-noise ratio and hence lower the detection limits (approximately 0.389% g/mL for mannitol-methanol suspensions and 0.4 wt % for beta-form GA in GA-methanol slurries comprising mixtures of both alpha- and beta-forms of GA) thereby providing an important contribution to crystallization process performance monitoring.


Subject(s)
Glutamic Acid/chemistry , Image Processing, Computer-Assisted/methods , Mannitol/chemistry , Methanol/chemistry , Crystallization , Models, Theoretical , X-Ray Diffraction
18.
Chem Commun (Camb) ; (22): 2834-5, 2003 Nov 21.
Article in English | MEDLINE | ID: mdl-14651128

ABSTRACT

DFT computations of the proton chemical shift for the intermolecular hydrogen bond in the white form of methylnitroacetanilide, together with the experimental value obtained by high-speed magic-angle spinning NMR, enable the N-H distance to be determined as 1.03 +/- 0.02 A.

SELECTION OF CITATIONS
SEARCH DETAIL
...