Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33397718

ABSTRACT

Macrodomains are proteins that recognize and hydrolyze ADP ribose (ADPR) modifications of intracellular proteins. Macrodomains are implicated in viral genome replication and interference with host cell immune responses. They are important to the infectious cycle of Coronaviridae and Togaviridae viruses. We describe crystal structures of the conserved macrodomain from the bat coronavirus (CoV) HKU4 in complex with ligands. The structures reveal a binding cavity that accommodates ADPR and analogs via local structural changes within the pocket. Using a radioactive assay, we present evidence of mono-ADPR (MAR) hydrolase activity. In silico analysis presents further evidence on recognition of the ADPR modification for hydrolysis. Mutational analysis of residues within the binding pocket resulted in diminished enzymatic activity and binding affinity. We conclude that the common structural features observed in the macrodomain in a bat CoV contribute to a conserved function that can be extended to other known macrodomains.


Subject(s)
Adenosine Diphosphate Ribose/chemistry , Coronavirus/enzymology , Pyrophosphatases/chemistry , Viral Nonstructural Proteins/chemistry , Animals , Binding Sites , Chiroptera , Coronavirus/genetics , Crystallography, X-Ray , Hydrolysis , Pyrophosphatases/genetics , Viral Nonstructural Proteins/genetics
2.
Nat Prod Commun ; 14(5): 1934578X19849202, 2019 May.
Article in English | MEDLINE | ID: mdl-32395093

ABSTRACT

Coronaviruses (CoVs) that cause infections such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome phylogenetically originate from bat CoVs. The coronaviral nonstructural protein 3 (nsp3) has been implicated in viral replication, polyprotein cleavage, and host immune interference. We report the structure of the C domain from the SARS-Unique Domain of bat CoV HKU4. The protein has a frataxin fold, consisting of 5 antiparallel ß strands packed against 2 α helices. Bioinformatics analyses and nuclear magnetic resonance experiments were conducted to investigate the function of HKU4 C. The results showed that HKU4 C engages in protein-protein interactions with the nearby M domain of nsp3. The HKU4 C residues involved in protein-protein interactions are conserved in group 2c CoVs, indicating a conserved function.

3.
Methods Mol Biol ; 1608: 475-513, 2017.
Article in English | MEDLINE | ID: mdl-28695527

ABSTRACT

The macrodomains are a multifunctional protein family that function as receptors and enzymes acting on poly(ADP-ribose), ADP-ribosylated proteins, and other metabolites of nicotinamide adenine dinucleotide (NAD+). Several new functions for macrodomains, such as nucleic acid binding and protein-protein interaction, have recently been identified in this family. Here, we discuss methods for the identification of new macrodomains in viruses and the prediction of their function. This is followed by the expression and purification of these proteins following overexpression in bacterial cells and confirmation of folding and function using biophysical methods.


Subject(s)
Computational Biology/methods , ADP-Ribosylation , Circular Dichroism , Coronavirus/genetics , Coronavirus/metabolism , Magnetic Resonance Spectroscopy , Protein Binding/genetics , Protein Binding/physiology , Protein Processing, Post-Translational
4.
Protein Sci ; 26(9): 1726-1737, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28580734

ABSTRACT

The coronavirus nonstructural protein 3 (nsp3) is a multifunctional protein that comprises multiple structural domains. This protein assists viral polyprotein cleavage, host immune interference, and may play other roles in genome replication or transcription. Here, we report the solution NMR structure of a protein from the "SARS-unique region" of the bat coronavirus HKU9. The protein contains a frataxin fold or double-wing motif, which is an α + ß fold that is associated with protein/protein interactions, DNA binding, and metal ion binding. High structural similarity to the human severe acute respiratory syndrome (SARS) coronavirus nsp3 is present. A possible functional site that is conserved among some betacoronaviruses has been identified using bioinformatics and biochemical analyses. This structure provides strong experimental support for the recent proposal advanced by us and others that the "SARS-unique" region is not unique to the human SARS virus, but is conserved among several different phylogenetic groups of coronaviruses and provides essential functions.


Subject(s)
Coronavirus/chemistry , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Severe acute respiratory syndrome-related coronavirus/chemistry , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Animals , Chiroptera , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Domains , Protein Folding
SELECTION OF CITATIONS
SEARCH DETAIL
...